|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPTextConfig, |
|
CLIPTextModelWithProjection, |
|
CLIPTokenizer, |
|
CLIPVisionConfig, |
|
CLIPVisionModelWithProjection, |
|
) |
|
|
|
from diffusers import KandinskyV22PriorPipeline, PriorTransformer, UnCLIPScheduler |
|
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps, torch_device |
|
|
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class Dummies: |
|
@property |
|
def text_embedder_hidden_size(self): |
|
return 32 |
|
|
|
@property |
|
def time_input_dim(self): |
|
return 32 |
|
|
|
@property |
|
def block_out_channels_0(self): |
|
return self.time_input_dim |
|
|
|
@property |
|
def time_embed_dim(self): |
|
return self.time_input_dim * 4 |
|
|
|
@property |
|
def cross_attention_dim(self): |
|
return 100 |
|
|
|
@property |
|
def dummy_tokenizer(self): |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
return tokenizer |
|
|
|
@property |
|
def dummy_text_encoder(self): |
|
torch.manual_seed(0) |
|
config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=self.text_embedder_hidden_size, |
|
projection_dim=self.text_embedder_hidden_size, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
return CLIPTextModelWithProjection(config) |
|
|
|
@property |
|
def dummy_prior(self): |
|
torch.manual_seed(0) |
|
|
|
model_kwargs = { |
|
"num_attention_heads": 2, |
|
"attention_head_dim": 12, |
|
"embedding_dim": self.text_embedder_hidden_size, |
|
"num_layers": 1, |
|
} |
|
|
|
model = PriorTransformer(**model_kwargs) |
|
|
|
model.clip_std = nn.Parameter(torch.ones(model.clip_std.shape)) |
|
return model |
|
|
|
@property |
|
def dummy_image_encoder(self): |
|
torch.manual_seed(0) |
|
config = CLIPVisionConfig( |
|
hidden_size=self.text_embedder_hidden_size, |
|
image_size=224, |
|
projection_dim=self.text_embedder_hidden_size, |
|
intermediate_size=37, |
|
num_attention_heads=4, |
|
num_channels=3, |
|
num_hidden_layers=5, |
|
patch_size=14, |
|
) |
|
|
|
model = CLIPVisionModelWithProjection(config) |
|
return model |
|
|
|
@property |
|
def dummy_image_processor(self): |
|
image_processor = CLIPImageProcessor( |
|
crop_size=224, |
|
do_center_crop=True, |
|
do_normalize=True, |
|
do_resize=True, |
|
image_mean=[0.48145466, 0.4578275, 0.40821073], |
|
image_std=[0.26862954, 0.26130258, 0.27577711], |
|
resample=3, |
|
size=224, |
|
) |
|
|
|
return image_processor |
|
|
|
def get_dummy_components(self): |
|
prior = self.dummy_prior |
|
image_encoder = self.dummy_image_encoder |
|
text_encoder = self.dummy_text_encoder |
|
tokenizer = self.dummy_tokenizer |
|
image_processor = self.dummy_image_processor |
|
|
|
scheduler = UnCLIPScheduler( |
|
variance_type="fixed_small_log", |
|
prediction_type="sample", |
|
num_train_timesteps=1000, |
|
clip_sample=True, |
|
clip_sample_range=10.0, |
|
) |
|
|
|
components = { |
|
"prior": prior, |
|
"image_encoder": image_encoder, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"scheduler": scheduler, |
|
"image_processor": image_processor, |
|
} |
|
|
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "horse", |
|
"generator": generator, |
|
"guidance_scale": 4.0, |
|
"num_inference_steps": 2, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
|
|
class KandinskyV22PriorPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = KandinskyV22PriorPipeline |
|
params = ["prompt"] |
|
batch_params = ["prompt", "negative_prompt"] |
|
required_optional_params = [ |
|
"num_images_per_prompt", |
|
"generator", |
|
"num_inference_steps", |
|
"latents", |
|
"negative_prompt", |
|
"guidance_scale", |
|
"output_type", |
|
"return_dict", |
|
] |
|
callback_cfg_params = ["prompt_embeds", "text_encoder_hidden_states", "text_mask"] |
|
test_xformers_attention = False |
|
|
|
def get_dummy_components(self): |
|
dummies = Dummies() |
|
return dummies.get_dummy_components() |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
dummies = Dummies() |
|
return dummies.get_dummy_inputs(device=device, seed=seed) |
|
|
|
def test_kandinsky_prior(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
|
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
output = pipe(**self.get_dummy_inputs(device)) |
|
image = output.image_embeds |
|
|
|
image_from_tuple = pipe( |
|
**self.get_dummy_inputs(device), |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -10:] |
|
image_from_tuple_slice = image_from_tuple[0, -10:] |
|
|
|
assert image.shape == (1, 32) |
|
|
|
expected_slice = np.array( |
|
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] |
|
) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
@skip_mps |
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(expected_max_diff=1e-3) |
|
|
|
@skip_mps |
|
def test_attention_slicing_forward_pass(self): |
|
test_max_difference = torch_device == "cpu" |
|
test_mean_pixel_difference = False |
|
|
|
self._test_attention_slicing_forward_pass( |
|
test_max_difference=test_max_difference, |
|
test_mean_pixel_difference=test_mean_pixel_difference, |
|
) |
|
|
|
|
|
def test_callback_inputs(self): |
|
sig = inspect.signature(self.pipeline_class.__call__) |
|
|
|
if not ("callback_on_step_end_tensor_inputs" in sig.parameters and "callback_on_step_end" in sig.parameters): |
|
return |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
self.assertTrue( |
|
hasattr(pipe, "_callback_tensor_inputs"), |
|
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", |
|
) |
|
|
|
def callback_inputs_test(pipe, i, t, callback_kwargs): |
|
missing_callback_inputs = set() |
|
for v in pipe._callback_tensor_inputs: |
|
if v not in callback_kwargs: |
|
missing_callback_inputs.add(v) |
|
self.assertTrue( |
|
len(missing_callback_inputs) == 0, f"Missing callback tensor inputs: {missing_callback_inputs}" |
|
) |
|
last_i = pipe.num_timesteps - 1 |
|
if i == last_i: |
|
callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"]) |
|
return callback_kwargs |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["callback_on_step_end"] = callback_inputs_test |
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs |
|
inputs["num_inference_steps"] = 2 |
|
inputs["output_type"] = "pt" |
|
|
|
output = pipe(**inputs)[0] |
|
assert output.abs().sum() == 0 |
|
|