|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DPMSolverMultistepScheduler, |
|
LEditsPPPipelineStableDiffusion, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
load_image, |
|
require_torch_gpu, |
|
skip_mps, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
@skip_mps |
|
class LEditsPPPipelineStableDiffusionFastTests(unittest.TestCase): |
|
pipeline_class = LEditsPPPipelineStableDiffusion |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
scheduler = DPMSolverMultistepScheduler(algorithm_type="sde-dpmsolver++", solver_order=2) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"generator": generator, |
|
"editing_prompt": ["wearing glasses", "sunshine"], |
|
"reverse_editing_direction": [False, True], |
|
"edit_guidance_scale": [10.0, 5.0], |
|
} |
|
return inputs |
|
|
|
def get_dummy_inversion_inputs(self, device, seed=0): |
|
images = floats_tensor((2, 3, 32, 32), rng=random.Random(0)).cpu().permute(0, 2, 3, 1) |
|
images = 255 * images |
|
image_1 = Image.fromarray(np.uint8(images[0])).convert("RGB") |
|
image_2 = Image.fromarray(np.uint8(images[1])).convert("RGB") |
|
|
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
inputs = { |
|
"image": [image_1, image_2], |
|
"source_prompt": "", |
|
"source_guidance_scale": 3.5, |
|
"num_inversion_steps": 20, |
|
"skip": 0.15, |
|
"generator": generator, |
|
} |
|
return inputs |
|
|
|
def test_ledits_pp_inversion(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = LEditsPPPipelineStableDiffusion(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inversion_inputs(device) |
|
inputs["image"] = inputs["image"][0] |
|
sd_pipe.invert(**inputs) |
|
assert sd_pipe.init_latents.shape == ( |
|
1, |
|
4, |
|
int(32 / sd_pipe.vae_scale_factor), |
|
int(32 / sd_pipe.vae_scale_factor), |
|
) |
|
|
|
latent_slice = sd_pipe.init_latents[0, -1, -3:, -3:].to(device) |
|
print(latent_slice.flatten()) |
|
expected_slice = np.array([-0.9084, -0.0367, 0.2940, 0.0839, 0.6890, 0.2651, -0.7104, 2.1090, -0.7822]) |
|
assert np.abs(latent_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_ledits_pp_inversion_batch(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = LEditsPPPipelineStableDiffusion(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inversion_inputs(device) |
|
sd_pipe.invert(**inputs) |
|
assert sd_pipe.init_latents.shape == ( |
|
2, |
|
4, |
|
int(32 / sd_pipe.vae_scale_factor), |
|
int(32 / sd_pipe.vae_scale_factor), |
|
) |
|
|
|
latent_slice = sd_pipe.init_latents[0, -1, -3:, -3:].to(device) |
|
print(latent_slice.flatten()) |
|
expected_slice = np.array([0.2528, 0.1458, -0.2166, 0.4565, -0.5657, -1.0286, -0.9961, 0.5933, 1.1173]) |
|
assert np.abs(latent_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
latent_slice = sd_pipe.init_latents[1, -1, -3:, -3:].to(device) |
|
print(latent_slice.flatten()) |
|
expected_slice = np.array([-0.0796, 2.0583, 0.5501, 0.5358, 0.0282, -0.2803, -1.0470, 0.7023, -0.0072]) |
|
assert np.abs(latent_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_ledits_pp_warmup_steps(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
pipe = LEditsPPPipelineStableDiffusion(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inversion_inputs = self.get_dummy_inversion_inputs(device) |
|
pipe.invert(**inversion_inputs) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
|
|
inputs["edit_warmup_steps"] = [0, 5] |
|
pipe(**inputs).images |
|
|
|
inputs["edit_warmup_steps"] = [5, 0] |
|
pipe(**inputs).images |
|
|
|
inputs["edit_warmup_steps"] = [5, 10] |
|
pipe(**inputs).images |
|
|
|
inputs["edit_warmup_steps"] = [10, 5] |
|
pipe(**inputs).images |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class LEditsPPPipelineStableDiffusionSlowTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
@classmethod |
|
def setUpClass(cls): |
|
raw_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png" |
|
) |
|
raw_image = raw_image.convert("RGB").resize((512, 512)) |
|
cls.raw_image = raw_image |
|
|
|
def test_ledits_pp_editing(self): |
|
pipe = LEditsPPPipelineStableDiffusion.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.manual_seed(0) |
|
_ = pipe.invert(image=self.raw_image, generator=generator) |
|
generator = torch.manual_seed(0) |
|
inputs = { |
|
"generator": generator, |
|
"editing_prompt": ["cat", "dog"], |
|
"reverse_editing_direction": [True, False], |
|
"edit_guidance_scale": [5.0, 5.0], |
|
"edit_threshold": [0.8, 0.8], |
|
} |
|
reconstruction = pipe(**inputs, output_type="np").images[0] |
|
|
|
output_slice = reconstruction[150:153, 140:143, -1] |
|
output_slice = output_slice.flatten() |
|
expected_slice = np.array( |
|
[0.9453125, 0.93310547, 0.84521484, 0.94628906, 0.9111328, 0.80859375, 0.93847656, 0.9042969, 0.8144531] |
|
) |
|
assert np.abs(output_slice - expected_slice).max() < 1e-2 |
|
|