|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from transformers import CLIPImageProcessor, CLIPVisionConfig |
|
|
|
from diffusers import AutoencoderKL, PaintByExamplePipeline, PNDMScheduler, UNet2DConditionModel |
|
from diffusers.pipelines.paint_by_example import PaintByExampleImageEncoder |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
load_image, |
|
nightly, |
|
require_torch_gpu, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import IMAGE_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, IMAGE_GUIDED_IMAGE_INPAINTING_PARAMS |
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class PaintByExamplePipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = PaintByExamplePipeline |
|
params = IMAGE_GUIDED_IMAGE_INPAINTING_PARAMS |
|
batch_params = IMAGE_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS |
|
image_params = frozenset([]) |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=9, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
config = CLIPVisionConfig( |
|
hidden_size=32, |
|
projection_dim=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
image_size=32, |
|
patch_size=4, |
|
) |
|
image_encoder = PaintByExampleImageEncoder(config, proj_size=32) |
|
feature_extractor = CLIPImageProcessor(crop_size=32, size=32) |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"image_encoder": image_encoder, |
|
"safety_checker": None, |
|
"feature_extractor": feature_extractor, |
|
} |
|
return components |
|
|
|
def convert_to_pt(self, image): |
|
image = np.array(image.convert("RGB")) |
|
image = image[None].transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 |
|
return image |
|
|
|
def get_dummy_inputs(self, device="cpu", seed=0): |
|
|
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
image = image.cpu().permute(0, 2, 3, 1)[0] |
|
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) |
|
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64)) |
|
example_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((32, 32)) |
|
|
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"example_image": example_image, |
|
"image": init_image, |
|
"mask_image": mask_image, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_paint_by_example_inpaint(self): |
|
components = self.get_dummy_components() |
|
|
|
|
|
pipe = PaintByExamplePipeline(**components) |
|
pipe = pipe.to("cpu") |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs() |
|
output = pipe(**inputs) |
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.4686, 0.5687, 0.4007, 0.5218, 0.5741, 0.4482, 0.4940, 0.4629, 0.4503]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_paint_by_example_image_tensor(self): |
|
device = "cpu" |
|
inputs = self.get_dummy_inputs() |
|
inputs.pop("mask_image") |
|
image = self.convert_to_pt(inputs.pop("image")) |
|
mask_image = image.clamp(0, 1) / 2 |
|
|
|
|
|
pipe = PaintByExamplePipeline(**self.get_dummy_components()) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
output = pipe(image=image, mask_image=mask_image[:, 0], **inputs) |
|
out_1 = output.images |
|
|
|
image = image.cpu().permute(0, 2, 3, 1)[0] |
|
mask_image = mask_image.cpu().permute(0, 2, 3, 1)[0] |
|
|
|
image = Image.fromarray(np.uint8(image)).convert("RGB") |
|
mask_image = Image.fromarray(np.uint8(mask_image)).convert("RGB") |
|
|
|
output = pipe(**self.get_dummy_inputs()) |
|
out_2 = output.images |
|
|
|
assert out_1.shape == (1, 64, 64, 3) |
|
assert np.abs(out_1.flatten() - out_2.flatten()).max() < 5e-2 |
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(expected_max_diff=3e-3) |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class PaintByExamplePipelineIntegrationTests(unittest.TestCase): |
|
def setUp(self): |
|
|
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_paint_by_example(self): |
|
|
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/paint_by_example/dog_in_bucket.png" |
|
) |
|
mask_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/paint_by_example/mask.png" |
|
) |
|
example_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/paint_by_example/panda.jpg" |
|
) |
|
|
|
pipe = PaintByExamplePipeline.from_pretrained("Fantasy-Studio/Paint-by-Example") |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.manual_seed(321) |
|
output = pipe( |
|
image=init_image, |
|
mask_image=mask_image, |
|
example_image=example_image, |
|
generator=generator, |
|
guidance_scale=5.0, |
|
num_inference_steps=50, |
|
output_type="np", |
|
) |
|
|
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.4834, 0.4811, 0.4874, 0.5122, 0.5081, 0.5144, 0.5291, 0.5290, 0.5374]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|