svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
8.13 kB
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPImageProcessor, CLIPVisionConfig
from diffusers import AutoencoderKL, PaintByExamplePipeline, PNDMScheduler, UNet2DConditionModel
from diffusers.pipelines.paint_by_example import PaintByExampleImageEncoder
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
nightly,
require_torch_gpu,
torch_device,
)
from ..pipeline_params import IMAGE_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, IMAGE_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class PaintByExamplePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = PaintByExamplePipeline
params = IMAGE_GUIDED_IMAGE_INPAINTING_PARAMS
batch_params = IMAGE_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
image_params = frozenset([]) # TO_DO: update the image_prams once refactored VaeImageProcessor.preprocess
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=9,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = PNDMScheduler(skip_prk_steps=True)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
config = CLIPVisionConfig(
hidden_size=32,
projection_dim=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
image_size=32,
patch_size=4,
)
image_encoder = PaintByExampleImageEncoder(config, proj_size=32)
feature_extractor = CLIPImageProcessor(crop_size=32, size=32)
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"image_encoder": image_encoder,
"safety_checker": None,
"feature_extractor": feature_extractor,
}
return components
def convert_to_pt(self, image):
image = np.array(image.convert("RGB"))
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
return image
def get_dummy_inputs(self, device="cpu", seed=0):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64))
example_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((32, 32))
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"example_image": example_image,
"image": init_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "np",
}
return inputs
def test_paint_by_example_inpaint(self):
components = self.get_dummy_components()
# make sure here that pndm scheduler skips prk
pipe = PaintByExamplePipeline(**components)
pipe = pipe.to("cpu")
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
output = pipe(**inputs)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.4686, 0.5687, 0.4007, 0.5218, 0.5741, 0.4482, 0.4940, 0.4629, 0.4503])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_paint_by_example_image_tensor(self):
device = "cpu"
inputs = self.get_dummy_inputs()
inputs.pop("mask_image")
image = self.convert_to_pt(inputs.pop("image"))
mask_image = image.clamp(0, 1) / 2
# make sure here that pndm scheduler skips prk
pipe = PaintByExamplePipeline(**self.get_dummy_components())
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(image=image, mask_image=mask_image[:, 0], **inputs)
out_1 = output.images
image = image.cpu().permute(0, 2, 3, 1)[0]
mask_image = mask_image.cpu().permute(0, 2, 3, 1)[0]
image = Image.fromarray(np.uint8(image)).convert("RGB")
mask_image = Image.fromarray(np.uint8(mask_image)).convert("RGB")
output = pipe(**self.get_dummy_inputs())
out_2 = output.images
assert out_1.shape == (1, 64, 64, 3)
assert np.abs(out_1.flatten() - out_2.flatten()).max() < 5e-2
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
@nightly
@require_torch_gpu
class PaintByExamplePipelineIntegrationTests(unittest.TestCase):
def setUp(self):
# clean up the VRAM before each test
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_paint_by_example(self):
# make sure here that pndm scheduler skips prk
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/paint_by_example/dog_in_bucket.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/paint_by_example/mask.png"
)
example_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/paint_by_example/panda.jpg"
)
pipe = PaintByExamplePipeline.from_pretrained("Fantasy-Studio/Paint-by-Example")
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = torch.manual_seed(321)
output = pipe(
image=init_image,
mask_image=mask_image,
example_image=example_image,
generator=generator,
guidance_scale=5.0,
num_inference_steps=50,
output_type="np",
)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.4834, 0.4811, 0.4874, 0.5122, 0.5081, 0.5144, 0.5291, 0.5290, 0.5374])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2