|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import AutoTokenizer, T5EncoderModel |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
PixArtAlphaPipeline, |
|
PixArtTransformer2DModel, |
|
) |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
numpy_cosine_similarity_distance, |
|
require_torch_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS |
|
from ..test_pipelines_common import PipelineTesterMixin, to_np |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class PixArtAlphaPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = PixArtAlphaPipeline |
|
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
|
|
required_optional_params = PipelineTesterMixin.required_optional_params |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
transformer = PixArtTransformer2DModel( |
|
sample_size=8, |
|
num_layers=2, |
|
patch_size=2, |
|
attention_head_dim=8, |
|
num_attention_heads=3, |
|
caption_channels=32, |
|
in_channels=4, |
|
cross_attention_dim=24, |
|
out_channels=8, |
|
attention_bias=True, |
|
activation_fn="gelu-approximate", |
|
num_embeds_ada_norm=1000, |
|
norm_type="ada_norm_single", |
|
norm_elementwise_affine=False, |
|
norm_eps=1e-6, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL() |
|
|
|
scheduler = DDIMScheduler() |
|
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
components = { |
|
"transformer": transformer.eval(), |
|
"vae": vae.eval(), |
|
"scheduler": scheduler, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 5.0, |
|
"use_resolution_binning": False, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_sequential_cpu_offload_forward_pass(self): |
|
|
|
return |
|
|
|
def test_save_load_optional_components(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
prompt = inputs["prompt"] |
|
generator = inputs["generator"] |
|
num_inference_steps = inputs["num_inference_steps"] |
|
output_type = inputs["output_type"] |
|
|
|
( |
|
prompt_embeds, |
|
prompt_attention_mask, |
|
negative_prompt_embeds, |
|
negative_prompt_attention_mask, |
|
) = pipe.encode_prompt(prompt) |
|
|
|
|
|
inputs = { |
|
"prompt_embeds": prompt_embeds, |
|
"prompt_attention_mask": prompt_attention_mask, |
|
"negative_prompt": None, |
|
"negative_prompt_embeds": negative_prompt_embeds, |
|
"negative_prompt_attention_mask": negative_prompt_attention_mask, |
|
"generator": generator, |
|
"num_inference_steps": num_inference_steps, |
|
"output_type": output_type, |
|
"use_resolution_binning": False, |
|
} |
|
|
|
|
|
for optional_component in pipe._optional_components: |
|
setattr(pipe, optional_component, None) |
|
|
|
output = pipe(**inputs)[0] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
pipe.save_pretrained(tmpdir) |
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) |
|
pipe_loaded.to(torch_device) |
|
pipe_loaded.set_progress_bar_config(disable=None) |
|
|
|
for optional_component in pipe._optional_components: |
|
self.assertTrue( |
|
getattr(pipe_loaded, optional_component) is None, |
|
f"`{optional_component}` did not stay set to None after loading.", |
|
) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
generator = inputs["generator"] |
|
num_inference_steps = inputs["num_inference_steps"] |
|
output_type = inputs["output_type"] |
|
|
|
|
|
inputs = { |
|
"prompt_embeds": prompt_embeds, |
|
"prompt_attention_mask": prompt_attention_mask, |
|
"negative_prompt": None, |
|
"negative_prompt_embeds": negative_prompt_embeds, |
|
"negative_prompt_attention_mask": negative_prompt_attention_mask, |
|
"generator": generator, |
|
"num_inference_steps": num_inference_steps, |
|
"output_type": output_type, |
|
"use_resolution_binning": False, |
|
} |
|
|
|
output_loaded = pipe_loaded(**inputs)[0] |
|
|
|
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() |
|
self.assertLess(max_diff, 1e-4) |
|
|
|
def test_inference(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
self.assertEqual(image.shape, (1, 8, 8, 3)) |
|
expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.483, 0.2583, 0.5331, 0.4852]) |
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max() |
|
self.assertLessEqual(max_diff, 1e-3) |
|
|
|
def test_inference_non_square_images(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs, height=32, width=48).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
self.assertEqual(image.shape, (1, 32, 48, 3)) |
|
|
|
expected_slice = np.array([0.6493, 0.537, 0.4081, 0.4762, 0.3695, 0.4711, 0.3026, 0.5218, 0.5263]) |
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max() |
|
self.assertLessEqual(max_diff, 1e-3) |
|
|
|
def test_inference_with_embeddings_and_multiple_images(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
prompt = inputs["prompt"] |
|
generator = inputs["generator"] |
|
num_inference_steps = inputs["num_inference_steps"] |
|
output_type = inputs["output_type"] |
|
|
|
prompt_embeds, prompt_attn_mask, negative_prompt_embeds, neg_prompt_attn_mask = pipe.encode_prompt(prompt) |
|
|
|
|
|
inputs = { |
|
"prompt_embeds": prompt_embeds, |
|
"prompt_attention_mask": prompt_attn_mask, |
|
"negative_prompt": None, |
|
"negative_prompt_embeds": negative_prompt_embeds, |
|
"negative_prompt_attention_mask": neg_prompt_attn_mask, |
|
"generator": generator, |
|
"num_inference_steps": num_inference_steps, |
|
"output_type": output_type, |
|
"num_images_per_prompt": 2, |
|
"use_resolution_binning": False, |
|
} |
|
|
|
|
|
for optional_component in pipe._optional_components: |
|
setattr(pipe, optional_component, None) |
|
|
|
output = pipe(**inputs)[0] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
pipe.save_pretrained(tmpdir) |
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) |
|
pipe_loaded.to(torch_device) |
|
pipe_loaded.set_progress_bar_config(disable=None) |
|
|
|
for optional_component in pipe._optional_components: |
|
self.assertTrue( |
|
getattr(pipe_loaded, optional_component) is None, |
|
f"`{optional_component}` did not stay set to None after loading.", |
|
) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
generator = inputs["generator"] |
|
num_inference_steps = inputs["num_inference_steps"] |
|
output_type = inputs["output_type"] |
|
|
|
|
|
inputs = { |
|
"prompt_embeds": prompt_embeds, |
|
"prompt_attention_mask": prompt_attn_mask, |
|
"negative_prompt": None, |
|
"negative_prompt_embeds": negative_prompt_embeds, |
|
"negative_prompt_attention_mask": neg_prompt_attn_mask, |
|
"generator": generator, |
|
"num_inference_steps": num_inference_steps, |
|
"output_type": output_type, |
|
"num_images_per_prompt": 2, |
|
"use_resolution_binning": False, |
|
} |
|
|
|
output_loaded = pipe_loaded(**inputs)[0] |
|
|
|
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() |
|
self.assertLess(max_diff, 1e-4) |
|
|
|
def test_inference_with_multiple_images_per_prompt(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["num_images_per_prompt"] = 2 |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
self.assertEqual(image.shape, (2, 8, 8, 3)) |
|
expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.483, 0.2583, 0.5331, 0.4852]) |
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max() |
|
self.assertLessEqual(max_diff, 1e-3) |
|
|
|
def test_raises_warning_for_mask_feature(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs.update({"mask_feature": True}) |
|
|
|
with self.assertWarns(FutureWarning) as warning_ctx: |
|
_ = pipe(**inputs).images |
|
|
|
assert "mask_feature" in str(warning_ctx.warning) |
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(expected_max_diff=1e-3) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class PixArtAlphaPipelineIntegrationTests(unittest.TestCase): |
|
ckpt_id_1024 = "PixArt-alpha/PixArt-XL-2-1024-MS" |
|
ckpt_id_512 = "PixArt-alpha/PixArt-XL-2-512x512" |
|
prompt = "A small cactus with a happy face in the Sahara desert." |
|
|
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_pixart_1024(self): |
|
generator = torch.Generator("cpu").manual_seed(0) |
|
|
|
pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16) |
|
pipe.enable_model_cpu_offload() |
|
prompt = self.prompt |
|
|
|
image = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = np.array([0.0742, 0.0835, 0.2114, 0.0295, 0.0784, 0.2361, 0.1738, 0.2251, 0.3589]) |
|
|
|
max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice) |
|
self.assertLessEqual(max_diff, 1e-4) |
|
|
|
def test_pixart_512(self): |
|
generator = torch.Generator("cpu").manual_seed(0) |
|
|
|
pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_512, torch_dtype=torch.float16) |
|
pipe.enable_model_cpu_offload() |
|
|
|
prompt = self.prompt |
|
|
|
image = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = np.array([0.3477, 0.3882, 0.4541, 0.3413, 0.3821, 0.4463, 0.4001, 0.4409, 0.4958]) |
|
|
|
max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice) |
|
self.assertLessEqual(max_diff, 1e-4) |
|
|
|
def test_pixart_1024_without_resolution_binning(self): |
|
generator = torch.manual_seed(0) |
|
|
|
pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16) |
|
pipe.enable_model_cpu_offload() |
|
|
|
prompt = self.prompt |
|
height, width = 1024, 768 |
|
num_inference_steps = 2 |
|
|
|
image = pipe( |
|
prompt, |
|
height=height, |
|
width=width, |
|
generator=generator, |
|
num_inference_steps=num_inference_steps, |
|
output_type="np", |
|
).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
generator = torch.manual_seed(0) |
|
no_res_bin_image = pipe( |
|
prompt, |
|
height=height, |
|
width=width, |
|
generator=generator, |
|
num_inference_steps=num_inference_steps, |
|
output_type="np", |
|
use_resolution_binning=False, |
|
).images |
|
no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1] |
|
|
|
assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4) |
|
|
|
def test_pixart_512_without_resolution_binning(self): |
|
generator = torch.manual_seed(0) |
|
|
|
pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_512, torch_dtype=torch.float16) |
|
pipe.enable_model_cpu_offload() |
|
|
|
prompt = self.prompt |
|
height, width = 512, 768 |
|
num_inference_steps = 2 |
|
|
|
image = pipe( |
|
prompt, |
|
height=height, |
|
width=width, |
|
generator=generator, |
|
num_inference_steps=num_inference_steps, |
|
output_type="np", |
|
).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
generator = torch.manual_seed(0) |
|
no_res_bin_image = pipe( |
|
prompt, |
|
height=height, |
|
width=width, |
|
generator=generator, |
|
num_inference_steps=num_inference_steps, |
|
output_type="np", |
|
use_resolution_binning=False, |
|
).images |
|
no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1] |
|
|
|
assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4) |
|
|