svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
15.6 kB
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
DDIMScheduler,
PixArtAlphaPipeline,
PixArtTransformer2DModel,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
numpy_cosine_similarity_distance,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, to_np
enable_full_determinism()
class PixArtAlphaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = PixArtAlphaPipeline
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
required_optional_params = PipelineTesterMixin.required_optional_params
def get_dummy_components(self):
torch.manual_seed(0)
transformer = PixArtTransformer2DModel(
sample_size=8,
num_layers=2,
patch_size=2,
attention_head_dim=8,
num_attention_heads=3,
caption_channels=32,
in_channels=4,
cross_attention_dim=24,
out_channels=8,
attention_bias=True,
activation_fn="gelu-approximate",
num_embeds_ada_norm=1000,
norm_type="ada_norm_single",
norm_elementwise_affine=False,
norm_eps=1e-6,
)
torch.manual_seed(0)
vae = AutoencoderKL()
scheduler = DDIMScheduler()
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {
"transformer": transformer.eval(),
"vae": vae.eval(),
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"use_resolution_binning": False,
"output_type": "np",
}
return inputs
def test_sequential_cpu_offload_forward_pass(self):
# TODO(PVP, Sayak) need to fix later
return
def test_save_load_optional_components(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
prompt = inputs["prompt"]
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
(
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_prompt_attention_mask,
) = pipe.encode_prompt(prompt)
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"prompt_attention_mask": prompt_attention_mask,
"negative_prompt": None,
"negative_prompt_embeds": negative_prompt_embeds,
"negative_prompt_attention_mask": negative_prompt_attention_mask,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
"use_resolution_binning": False,
}
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(pipe, optional_component, None)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(pipe_loaded, optional_component) is None,
f"`{optional_component}` did not stay set to None after loading.",
)
inputs = self.get_dummy_inputs(torch_device)
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"prompt_attention_mask": prompt_attention_mask,
"negative_prompt": None,
"negative_prompt_embeds": negative_prompt_embeds,
"negative_prompt_attention_mask": negative_prompt_attention_mask,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
"use_resolution_binning": False,
}
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, 1e-4)
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
self.assertEqual(image.shape, (1, 8, 8, 3))
expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.483, 0.2583, 0.5331, 0.4852])
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
def test_inference_non_square_images(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs, height=32, width=48).images
image_slice = image[0, -3:, -3:, -1]
self.assertEqual(image.shape, (1, 32, 48, 3))
expected_slice = np.array([0.6493, 0.537, 0.4081, 0.4762, 0.3695, 0.4711, 0.3026, 0.5218, 0.5263])
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
def test_inference_with_embeddings_and_multiple_images(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
prompt = inputs["prompt"]
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
prompt_embeds, prompt_attn_mask, negative_prompt_embeds, neg_prompt_attn_mask = pipe.encode_prompt(prompt)
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"prompt_attention_mask": prompt_attn_mask,
"negative_prompt": None,
"negative_prompt_embeds": negative_prompt_embeds,
"negative_prompt_attention_mask": neg_prompt_attn_mask,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
"num_images_per_prompt": 2,
"use_resolution_binning": False,
}
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(pipe, optional_component, None)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(pipe_loaded, optional_component) is None,
f"`{optional_component}` did not stay set to None after loading.",
)
inputs = self.get_dummy_inputs(torch_device)
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"prompt_attention_mask": prompt_attn_mask,
"negative_prompt": None,
"negative_prompt_embeds": negative_prompt_embeds,
"negative_prompt_attention_mask": neg_prompt_attn_mask,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
"num_images_per_prompt": 2,
"use_resolution_binning": False,
}
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, 1e-4)
def test_inference_with_multiple_images_per_prompt(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["num_images_per_prompt"] = 2
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
self.assertEqual(image.shape, (2, 8, 8, 3))
expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.483, 0.2583, 0.5331, 0.4852])
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
def test_raises_warning_for_mask_feature(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs.update({"mask_feature": True})
with self.assertWarns(FutureWarning) as warning_ctx:
_ = pipe(**inputs).images
assert "mask_feature" in str(warning_ctx.warning)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=1e-3)
@slow
@require_torch_gpu
class PixArtAlphaPipelineIntegrationTests(unittest.TestCase):
ckpt_id_1024 = "PixArt-alpha/PixArt-XL-2-1024-MS"
ckpt_id_512 = "PixArt-alpha/PixArt-XL-2-512x512"
prompt = "A small cactus with a happy face in the Sahara desert."
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_pixart_1024(self):
generator = torch.Generator("cpu").manual_seed(0)
pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
prompt = self.prompt
image = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").images
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.0742, 0.0835, 0.2114, 0.0295, 0.0784, 0.2361, 0.1738, 0.2251, 0.3589])
max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice)
self.assertLessEqual(max_diff, 1e-4)
def test_pixart_512(self):
generator = torch.Generator("cpu").manual_seed(0)
pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_512, torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
prompt = self.prompt
image = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").images
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array([0.3477, 0.3882, 0.4541, 0.3413, 0.3821, 0.4463, 0.4001, 0.4409, 0.4958])
max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice)
self.assertLessEqual(max_diff, 1e-4)
def test_pixart_1024_without_resolution_binning(self):
generator = torch.manual_seed(0)
pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
prompt = self.prompt
height, width = 1024, 768
num_inference_steps = 2
image = pipe(
prompt,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
output_type="np",
).images
image_slice = image[0, -3:, -3:, -1]
generator = torch.manual_seed(0)
no_res_bin_image = pipe(
prompt,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
output_type="np",
use_resolution_binning=False,
).images
no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1]
assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4)
def test_pixart_512_without_resolution_binning(self):
generator = torch.manual_seed(0)
pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_512, torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
prompt = self.prompt
height, width = 512, 768
num_inference_steps = 2
image = pipe(
prompt,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
output_type="np",
).images
image_slice = image[0, -3:, -3:, -1]
generator = torch.manual_seed(0)
no_res_bin_image = pipe(
prompt,
height=height,
width=width,
generator=generator,
num_inference_steps=num_inference_steps,
output_type="np",
use_resolution_binning=False,
).images
no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1]
assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4)