|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import PNDMPipeline, PNDMScheduler, UNet2DModel |
|
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch, torch_device |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class PNDMPipelineFastTests(unittest.TestCase): |
|
@property |
|
def dummy_uncond_unet(self): |
|
torch.manual_seed(0) |
|
model = UNet2DModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"), |
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"), |
|
) |
|
return model |
|
|
|
def test_inference(self): |
|
unet = self.dummy_uncond_unet |
|
scheduler = PNDMScheduler() |
|
|
|
pndm = PNDMPipeline(unet=unet, scheduler=scheduler) |
|
pndm.to(torch_device) |
|
pndm.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.manual_seed(0) |
|
image = pndm(generator=generator, num_inference_steps=20, output_type="np").images |
|
|
|
generator = torch.manual_seed(0) |
|
image_from_tuple = pndm(generator=generator, num_inference_steps=20, output_type="np", return_dict=False)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
|
|
@nightly |
|
@require_torch |
|
class PNDMPipelineIntegrationTests(unittest.TestCase): |
|
def test_inference_cifar10(self): |
|
model_id = "google/ddpm-cifar10-32" |
|
|
|
unet = UNet2DModel.from_pretrained(model_id) |
|
scheduler = PNDMScheduler() |
|
|
|
pndm = PNDMPipeline(unet=unet, scheduler=scheduler) |
|
pndm.to(torch_device) |
|
pndm.set_progress_bar_config(disable=None) |
|
generator = torch.manual_seed(0) |
|
image = pndm(generator=generator, output_type="np").images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|