|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer |
|
|
|
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline |
|
from diffusers.pipelines.shap_e import ShapERenderer |
|
from diffusers.utils.testing_utils import load_numpy, nightly, require_torch_gpu, torch_device |
|
|
|
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference |
|
|
|
|
|
class ShapEPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = ShapEPipeline |
|
params = ["prompt"] |
|
batch_params = ["prompt"] |
|
required_optional_params = [ |
|
"num_images_per_prompt", |
|
"num_inference_steps", |
|
"generator", |
|
"latents", |
|
"guidance_scale", |
|
"frame_size", |
|
"output_type", |
|
"return_dict", |
|
] |
|
test_xformers_attention = False |
|
|
|
@property |
|
def text_embedder_hidden_size(self): |
|
return 16 |
|
|
|
@property |
|
def time_input_dim(self): |
|
return 16 |
|
|
|
@property |
|
def time_embed_dim(self): |
|
return self.time_input_dim * 4 |
|
|
|
@property |
|
def renderer_dim(self): |
|
return 8 |
|
|
|
@property |
|
def dummy_tokenizer(self): |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
return tokenizer |
|
|
|
@property |
|
def dummy_text_encoder(self): |
|
torch.manual_seed(0) |
|
config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=self.text_embedder_hidden_size, |
|
projection_dim=self.text_embedder_hidden_size, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
return CLIPTextModelWithProjection(config) |
|
|
|
@property |
|
def dummy_prior(self): |
|
torch.manual_seed(0) |
|
|
|
model_kwargs = { |
|
"num_attention_heads": 2, |
|
"attention_head_dim": 16, |
|
"embedding_dim": self.time_input_dim, |
|
"num_embeddings": 32, |
|
"embedding_proj_dim": self.text_embedder_hidden_size, |
|
"time_embed_dim": self.time_embed_dim, |
|
"num_layers": 1, |
|
"clip_embed_dim": self.time_input_dim * 2, |
|
"additional_embeddings": 0, |
|
"time_embed_act_fn": "gelu", |
|
"norm_in_type": "layer", |
|
"encoder_hid_proj_type": None, |
|
"added_emb_type": None, |
|
} |
|
|
|
model = PriorTransformer(**model_kwargs) |
|
return model |
|
|
|
@property |
|
def dummy_renderer(self): |
|
torch.manual_seed(0) |
|
|
|
model_kwargs = { |
|
"param_shapes": ( |
|
(self.renderer_dim, 93), |
|
(self.renderer_dim, 8), |
|
(self.renderer_dim, 8), |
|
(self.renderer_dim, 8), |
|
), |
|
"d_latent": self.time_input_dim, |
|
"d_hidden": self.renderer_dim, |
|
"n_output": 12, |
|
"background": ( |
|
0.1, |
|
0.1, |
|
0.1, |
|
), |
|
} |
|
model = ShapERenderer(**model_kwargs) |
|
return model |
|
|
|
def get_dummy_components(self): |
|
prior = self.dummy_prior |
|
text_encoder = self.dummy_text_encoder |
|
tokenizer = self.dummy_tokenizer |
|
shap_e_renderer = self.dummy_renderer |
|
|
|
scheduler = HeunDiscreteScheduler( |
|
beta_schedule="exp", |
|
num_train_timesteps=1024, |
|
prediction_type="sample", |
|
use_karras_sigmas=True, |
|
clip_sample=True, |
|
clip_sample_range=1.0, |
|
) |
|
components = { |
|
"prior": prior, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"shap_e_renderer": shap_e_renderer, |
|
"scheduler": scheduler, |
|
} |
|
|
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "horse", |
|
"generator": generator, |
|
"num_inference_steps": 1, |
|
"frame_size": 32, |
|
"output_type": "latent", |
|
} |
|
return inputs |
|
|
|
def test_shap_e(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
|
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
output = pipe(**self.get_dummy_inputs(device)) |
|
image = output.images[0] |
|
image = image.cpu().numpy() |
|
image_slice = image[-3:, -3:] |
|
|
|
assert image.shape == (32, 16) |
|
|
|
expected_slice = np.array([-1.0000, -0.6241, 1.0000, -0.8978, -0.6866, 0.7876, -0.7473, -0.2874, 0.6103]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_inference_batch_consistent(self): |
|
|
|
self._test_inference_batch_consistent(batch_sizes=[1, 2]) |
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(batch_size=2, expected_max_diff=6e-3) |
|
|
|
def test_num_images_per_prompt(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
batch_size = 1 |
|
num_images_per_prompt = 2 |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
for key in inputs.keys(): |
|
if key in self.batch_params: |
|
inputs[key] = batch_size * [inputs[key]] |
|
|
|
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0] |
|
|
|
assert images.shape[0] == batch_size * num_images_per_prompt |
|
|
|
def test_float16_inference(self): |
|
super().test_float16_inference(expected_max_diff=5e-1) |
|
|
|
def test_save_load_local(self): |
|
super().test_save_load_local(expected_max_difference=5e-3) |
|
|
|
@unittest.skip("Key error is raised with accelerate") |
|
def test_sequential_cpu_offload_forward_pass(self): |
|
pass |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class ShapEPipelineIntegrationTests(unittest.TestCase): |
|
def setUp(self): |
|
|
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_shap_e(self): |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/shap_e/test_shap_e_np_out.npy" |
|
) |
|
pipe = ShapEPipeline.from_pretrained("openai/shap-e") |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
|
|
images = pipe( |
|
"a shark", |
|
generator=generator, |
|
guidance_scale=15.0, |
|
num_inference_steps=64, |
|
frame_size=64, |
|
output_type="np", |
|
).images[0] |
|
|
|
assert images.shape == (20, 64, 64, 3) |
|
|
|
assert_mean_pixel_difference(images, expected_image) |
|
|