|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer |
|
|
|
from diffusers import DDPMWuerstchenScheduler, StableCascadeCombinedPipeline |
|
from diffusers.models import StableCascadeUNet |
|
from diffusers.pipelines.wuerstchen import PaellaVQModel |
|
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, torch_device |
|
|
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class StableCascadeCombinedPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = StableCascadeCombinedPipeline |
|
params = ["prompt"] |
|
batch_params = ["prompt", "negative_prompt"] |
|
required_optional_params = [ |
|
"generator", |
|
"height", |
|
"width", |
|
"latents", |
|
"prior_guidance_scale", |
|
"decoder_guidance_scale", |
|
"negative_prompt", |
|
"num_inference_steps", |
|
"return_dict", |
|
"prior_num_inference_steps", |
|
"output_type", |
|
] |
|
test_xformers_attention = True |
|
|
|
@property |
|
def text_embedder_hidden_size(self): |
|
return 32 |
|
|
|
@property |
|
def dummy_prior(self): |
|
torch.manual_seed(0) |
|
|
|
model_kwargs = { |
|
"conditioning_dim": 128, |
|
"block_out_channels": (128, 128), |
|
"num_attention_heads": (2, 2), |
|
"down_num_layers_per_block": (1, 1), |
|
"up_num_layers_per_block": (1, 1), |
|
"clip_image_in_channels": 768, |
|
"switch_level": (False,), |
|
"clip_text_in_channels": self.text_embedder_hidden_size, |
|
"clip_text_pooled_in_channels": self.text_embedder_hidden_size, |
|
} |
|
|
|
model = StableCascadeUNet(**model_kwargs) |
|
return model.eval() |
|
|
|
@property |
|
def dummy_tokenizer(self): |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
return tokenizer |
|
|
|
@property |
|
def dummy_text_encoder(self): |
|
torch.manual_seed(0) |
|
config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
projection_dim=self.text_embedder_hidden_size, |
|
hidden_size=self.text_embedder_hidden_size, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
return CLIPTextModelWithProjection(config).eval() |
|
|
|
@property |
|
def dummy_vqgan(self): |
|
torch.manual_seed(0) |
|
|
|
model_kwargs = { |
|
"bottleneck_blocks": 1, |
|
"num_vq_embeddings": 2, |
|
} |
|
model = PaellaVQModel(**model_kwargs) |
|
return model.eval() |
|
|
|
@property |
|
def dummy_decoder(self): |
|
torch.manual_seed(0) |
|
model_kwargs = { |
|
"in_channels": 4, |
|
"out_channels": 4, |
|
"conditioning_dim": 128, |
|
"block_out_channels": (16, 32, 64, 128), |
|
"num_attention_heads": (-1, -1, 1, 2), |
|
"down_num_layers_per_block": (1, 1, 1, 1), |
|
"up_num_layers_per_block": (1, 1, 1, 1), |
|
"down_blocks_repeat_mappers": (1, 1, 1, 1), |
|
"up_blocks_repeat_mappers": (3, 3, 2, 2), |
|
"block_types_per_layer": ( |
|
("SDCascadeResBlock", "SDCascadeTimestepBlock"), |
|
("SDCascadeResBlock", "SDCascadeTimestepBlock"), |
|
("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"), |
|
("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"), |
|
), |
|
"switch_level": None, |
|
"clip_text_pooled_in_channels": 32, |
|
"dropout": (0.1, 0.1, 0.1, 0.1), |
|
} |
|
|
|
model = StableCascadeUNet(**model_kwargs) |
|
return model.eval() |
|
|
|
def get_dummy_components(self): |
|
prior = self.dummy_prior |
|
|
|
scheduler = DDPMWuerstchenScheduler() |
|
tokenizer = self.dummy_tokenizer |
|
text_encoder = self.dummy_text_encoder |
|
decoder = self.dummy_decoder |
|
vqgan = self.dummy_vqgan |
|
prior_text_encoder = self.dummy_text_encoder |
|
prior_tokenizer = self.dummy_tokenizer |
|
|
|
components = { |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"decoder": decoder, |
|
"scheduler": scheduler, |
|
"vqgan": vqgan, |
|
"prior_text_encoder": prior_text_encoder, |
|
"prior_tokenizer": prior_tokenizer, |
|
"prior_prior": prior, |
|
"prior_scheduler": scheduler, |
|
"prior_feature_extractor": None, |
|
"prior_image_encoder": None, |
|
} |
|
|
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "horse", |
|
"generator": generator, |
|
"prior_guidance_scale": 4.0, |
|
"decoder_guidance_scale": 4.0, |
|
"num_inference_steps": 2, |
|
"prior_num_inference_steps": 2, |
|
"output_type": "np", |
|
"height": 128, |
|
"width": 128, |
|
} |
|
return inputs |
|
|
|
def test_stable_cascade(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
|
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
output = pipe(**self.get_dummy_inputs(device)) |
|
image = output.images |
|
|
|
image_from_tuple = pipe(**self.get_dummy_inputs(device), return_dict=False)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[-3:, -3:, -1] |
|
|
|
assert image.shape == (1, 128, 128, 3) |
|
|
|
expected_slice = np.array([0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0]) |
|
assert ( |
|
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" |
|
assert ( |
|
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" |
|
|
|
@require_torch_gpu |
|
def test_offloads(self): |
|
pipes = [] |
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components).to(torch_device) |
|
pipes.append(sd_pipe) |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe.enable_sequential_cpu_offload() |
|
pipes.append(sd_pipe) |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe.enable_model_cpu_offload() |
|
pipes.append(sd_pipe) |
|
|
|
image_slices = [] |
|
for pipe in pipes: |
|
inputs = self.get_dummy_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
|
|
image_slices.append(image[0, -3:, -3:, -1].flatten()) |
|
|
|
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 |
|
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 |
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(expected_max_diff=2e-2) |
|
|
|
@unittest.skip(reason="fp16 not supported") |
|
def test_float16_inference(self): |
|
super().test_float16_inference() |
|
|
|
@unittest.skip(reason="no callback test for combined pipeline") |
|
def test_callback_inputs(self): |
|
super().test_callback_inputs() |
|
|
|
def test_stable_cascade_combined_prompt_embeds(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
pipe = StableCascadeCombinedPipeline(**components) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A photograph of a shiba inu, wearing a hat" |
|
( |
|
prompt_embeds, |
|
prompt_embeds_pooled, |
|
negative_prompt_embeds, |
|
negative_prompt_embeds_pooled, |
|
) = pipe.prior_pipe.encode_prompt(device, 1, 1, False, prompt=prompt) |
|
generator = torch.Generator(device=device) |
|
|
|
output_prompt = pipe( |
|
prompt=prompt, |
|
num_inference_steps=1, |
|
prior_num_inference_steps=1, |
|
output_type="np", |
|
generator=generator.manual_seed(0), |
|
) |
|
output_prompt_embeds = pipe( |
|
prompt=None, |
|
prompt_embeds=prompt_embeds, |
|
prompt_embeds_pooled=prompt_embeds_pooled, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, |
|
num_inference_steps=1, |
|
prior_num_inference_steps=1, |
|
output_type="np", |
|
generator=generator.manual_seed(0), |
|
) |
|
|
|
assert np.abs(output_prompt.images - output_prompt_embeds.images).max() < 1e-5 |
|
|