|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import tempfile |
|
import time |
|
import traceback |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from huggingface_hub import hf_hub_download |
|
from transformers import ( |
|
CLIPTextConfig, |
|
CLIPTextModel, |
|
CLIPTokenizer, |
|
) |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
LCMScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
StableDiffusionPipeline, |
|
UNet2DConditionModel, |
|
logging, |
|
) |
|
from diffusers.utils.testing_utils import ( |
|
CaptureLogger, |
|
enable_full_determinism, |
|
load_image, |
|
load_numpy, |
|
nightly, |
|
numpy_cosine_similarity_distance, |
|
require_accelerate_version_greater, |
|
require_python39_or_higher, |
|
require_torch_2, |
|
require_torch_gpu, |
|
require_torch_multi_gpu, |
|
run_test_in_subprocess, |
|
skip_mps, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import ( |
|
TEXT_TO_IMAGE_BATCH_PARAMS, |
|
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, |
|
TEXT_TO_IMAGE_IMAGE_PARAMS, |
|
TEXT_TO_IMAGE_PARAMS, |
|
) |
|
from ..test_pipelines_common import ( |
|
IPAdapterTesterMixin, |
|
PipelineKarrasSchedulerTesterMixin, |
|
PipelineLatentTesterMixin, |
|
PipelineTesterMixin, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
|
|
def _test_stable_diffusion_compile(in_queue, out_queue, timeout): |
|
error = None |
|
try: |
|
inputs = in_queue.get(timeout=timeout) |
|
torch_device = inputs.pop("torch_device") |
|
seed = inputs.pop("seed") |
|
inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed) |
|
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) |
|
sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
|
|
sd_pipe.unet.to(memory_format=torch.channels_last) |
|
sd_pipe.unet = torch.compile(sd_pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
|
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239]) |
|
|
|
assert np.abs(image_slice - expected_slice).max() < 5e-3 |
|
except Exception: |
|
error = f"{traceback.format_exc()}" |
|
|
|
results = {"error": error} |
|
out_queue.put(results, timeout=timeout) |
|
out_queue.join() |
|
|
|
|
|
class StableDiffusionPipelineFastTests( |
|
IPAdapterTesterMixin, |
|
PipelineLatentTesterMixin, |
|
PipelineKarrasSchedulerTesterMixin, |
|
PipelineTesterMixin, |
|
unittest.TestCase, |
|
): |
|
pipeline_class = StableDiffusionPipeline |
|
params = TEXT_TO_IMAGE_PARAMS |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS |
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None): |
|
cross_attention_dim = 8 |
|
|
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(4, 8), |
|
layers_per_block=1, |
|
sample_size=32, |
|
time_cond_proj_dim=time_cond_proj_dim, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=cross_attention_dim, |
|
norm_num_groups=2, |
|
) |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[4, 8], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
norm_num_groups=2, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=cross_attention_dim, |
|
intermediate_size=16, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=2, |
|
num_hidden_layers=2, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
"image_encoder": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_ddim(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs) |
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.1763, 0.4776, 0.4986, 0.2566, 0.3802, 0.4596, 0.5363, 0.3277, 0.3949]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_lcm(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components(time_cond_proj_dim=256) |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs) |
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.2368, 0.4900, 0.5019, 0.2723, 0.4473, 0.4578, 0.4551, 0.3532, 0.4133]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_lcm_custom_timesteps(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components(time_cond_proj_dim=256) |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
del inputs["num_inference_steps"] |
|
inputs["timesteps"] = [999, 499] |
|
output = sd_pipe(**inputs) |
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.2368, 0.4900, 0.5019, 0.2723, 0.4473, 0.4578, 0.4551, 0.3532, 0.4133]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_ays(self): |
|
from diffusers.schedulers import AysSchedules |
|
|
|
timestep_schedule = AysSchedules["StableDiffusionTimesteps"] |
|
sigma_schedule = AysSchedules["StableDiffusionSigmas"] |
|
|
|
device = "cpu" |
|
|
|
components = self.get_dummy_components(time_cond_proj_dim=256) |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["num_inference_steps"] = 10 |
|
output = sd_pipe(**inputs).images |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["num_inference_steps"] = None |
|
inputs["timesteps"] = timestep_schedule |
|
output_ts = sd_pipe(**inputs).images |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["num_inference_steps"] = None |
|
inputs["sigmas"] = sigma_schedule |
|
output_sigmas = sd_pipe(**inputs).images |
|
|
|
assert ( |
|
np.abs(output_sigmas.flatten() - output_ts.flatten()).max() < 1e-3 |
|
), "ays timesteps and ays sigmas should have the same outputs" |
|
assert ( |
|
np.abs(output.flatten() - output_ts.flatten()).max() > 1e-3 |
|
), "use ays timesteps should have different outputs" |
|
assert ( |
|
np.abs(output.flatten() - output_sigmas.flatten()).max() > 1e-3 |
|
), "use ays sigmas should have different outputs" |
|
|
|
def test_stable_diffusion_prompt_embeds(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["prompt"] = 3 * [inputs["prompt"]] |
|
|
|
|
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
prompt = 3 * [inputs.pop("prompt")] |
|
|
|
text_inputs = sd_pipe.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=sd_pipe.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_inputs = text_inputs["input_ids"].to(torch_device) |
|
|
|
prompt_embeds = sd_pipe.text_encoder(text_inputs)[0] |
|
|
|
inputs["prompt_embeds"] = prompt_embeds |
|
|
|
|
|
output = sd_pipe(**inputs) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|
|
def test_stable_diffusion_negative_prompt_embeds(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
negative_prompt = 3 * ["this is a negative prompt"] |
|
inputs["negative_prompt"] = negative_prompt |
|
inputs["prompt"] = 3 * [inputs["prompt"]] |
|
|
|
|
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
prompt = 3 * [inputs.pop("prompt")] |
|
|
|
embeds = [] |
|
for p in [prompt, negative_prompt]: |
|
text_inputs = sd_pipe.tokenizer( |
|
p, |
|
padding="max_length", |
|
max_length=sd_pipe.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_inputs = text_inputs["input_ids"].to(torch_device) |
|
|
|
embeds.append(sd_pipe.text_encoder(text_inputs)[0]) |
|
|
|
inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds |
|
|
|
|
|
output = sd_pipe(**inputs) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|
|
def test_stable_diffusion_prompt_embeds_no_text_encoder_or_tokenizer(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["negative_prompt"] = "this is a negative prompt" |
|
|
|
|
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
prompt = inputs.pop("prompt") |
|
negative_prompt = "this is a negative prompt" |
|
|
|
prompt_embeds, negative_prompt_embeds = sd_pipe.encode_prompt( |
|
prompt, |
|
torch_device, |
|
1, |
|
True, |
|
negative_prompt=negative_prompt, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
) |
|
|
|
inputs["prompt_embeds"] = prompt_embeds |
|
inputs["negative_prompt_embeds"] = negative_prompt_embeds |
|
|
|
sd_pipe.text_encoder = None |
|
sd_pipe.tokenizer = None |
|
|
|
|
|
output = sd_pipe(**inputs) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|
|
def test_stable_diffusion_prompt_embeds_with_plain_negative_prompt_list(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
negative_prompt = 3 * ["this is a negative prompt"] |
|
inputs["negative_prompt"] = negative_prompt |
|
inputs["prompt"] = 3 * [inputs["prompt"]] |
|
|
|
|
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["negative_prompt"] = negative_prompt |
|
prompt = 3 * [inputs.pop("prompt")] |
|
|
|
text_inputs = sd_pipe.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=sd_pipe.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_inputs = text_inputs["input_ids"].to(torch_device) |
|
|
|
prompt_embeds = sd_pipe.text_encoder(text_inputs)[0] |
|
|
|
inputs["prompt_embeds"] = prompt_embeds |
|
|
|
|
|
output = sd_pipe(**inputs) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|
|
def test_stable_diffusion_ddim_factor_8(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs, height=136, width=136) |
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 136, 136, 3) |
|
expected_slice = np.array([0.4720, 0.5426, 0.5160, 0.3961, 0.4696, 0.4296, 0.5738, 0.5888, 0.5481]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_pndm(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe.scheduler = PNDMScheduler(skip_prk_steps=True) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs) |
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.1941, 0.4748, 0.4880, 0.2222, 0.4221, 0.4545, 0.5604, 0.3488, 0.3902]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_no_safety_checker(self): |
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None |
|
) |
|
assert isinstance(pipe, StableDiffusionPipeline) |
|
assert isinstance(pipe.scheduler, LMSDiscreteScheduler) |
|
assert pipe.safety_checker is None |
|
|
|
image = pipe("example prompt", num_inference_steps=2).images[0] |
|
assert image is not None |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
pipe.save_pretrained(tmpdirname) |
|
pipe = StableDiffusionPipeline.from_pretrained(tmpdirname) |
|
|
|
|
|
assert pipe.safety_checker is None |
|
image = pipe("example prompt", num_inference_steps=2).images[0] |
|
assert image is not None |
|
|
|
def test_stable_diffusion_k_lms(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs) |
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.2681, 0.4785, 0.4857, 0.2426, 0.4473, 0.4481, 0.5610, 0.3676, 0.3855]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_k_euler_ancestral(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs) |
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.2682, 0.4782, 0.4855, 0.2424, 0.4472, 0.4479, 0.5612, 0.3676, 0.3854]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_k_euler(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs) |
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.2681, 0.4785, 0.4857, 0.2426, 0.4473, 0.4481, 0.5610, 0.3676, 0.3855]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_vae_slicing(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config) |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
image_count = 4 |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["prompt"] = [inputs["prompt"]] * image_count |
|
output_1 = sd_pipe(**inputs) |
|
|
|
|
|
sd_pipe.enable_vae_slicing() |
|
inputs = self.get_dummy_inputs(device) |
|
inputs["prompt"] = [inputs["prompt"]] * image_count |
|
output_2 = sd_pipe(**inputs) |
|
|
|
|
|
assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 3e-3 |
|
|
|
def test_stable_diffusion_vae_tiling(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
|
|
components["safety_checker"] = None |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") |
|
|
|
|
|
sd_pipe.enable_vae_tiling() |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") |
|
|
|
assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 5e-1 |
|
|
|
|
|
shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)] |
|
for shape in shapes: |
|
zeros = torch.zeros(shape).to(device) |
|
sd_pipe.vae.decode(zeros) |
|
|
|
def test_stable_diffusion_negative_prompt(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
components["scheduler"] = PNDMScheduler(skip_prk_steps=True) |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
negative_prompt = "french fries" |
|
output = sd_pipe(**inputs, negative_prompt=negative_prompt) |
|
|
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.1907, 0.4709, 0.4858, 0.2224, 0.4223, 0.4539, 0.5606, 0.3489, 0.3900]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_long_prompt(self): |
|
components = self.get_dummy_components() |
|
components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config) |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
do_classifier_free_guidance = True |
|
negative_prompt = None |
|
num_images_per_prompt = 1 |
|
logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion") |
|
logger.setLevel(logging.WARNING) |
|
|
|
prompt = 100 * "@" |
|
with CaptureLogger(logger) as cap_logger: |
|
negative_text_embeddings, text_embeddings = sd_pipe.encode_prompt( |
|
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt |
|
) |
|
if negative_text_embeddings is not None: |
|
text_embeddings = torch.cat([negative_text_embeddings, text_embeddings]) |
|
|
|
|
|
assert cap_logger.out.count("@") == 25 |
|
|
|
negative_prompt = "Hello" |
|
with CaptureLogger(logger) as cap_logger_2: |
|
negative_text_embeddings_2, text_embeddings_2 = sd_pipe.encode_prompt( |
|
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt |
|
) |
|
if negative_text_embeddings_2 is not None: |
|
text_embeddings_2 = torch.cat([negative_text_embeddings_2, text_embeddings_2]) |
|
|
|
assert cap_logger.out == cap_logger_2.out |
|
|
|
prompt = 25 * "@" |
|
with CaptureLogger(logger) as cap_logger_3: |
|
negative_text_embeddings_3, text_embeddings_3 = sd_pipe.encode_prompt( |
|
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt |
|
) |
|
if negative_text_embeddings_3 is not None: |
|
text_embeddings_3 = torch.cat([negative_text_embeddings_3, text_embeddings_3]) |
|
|
|
assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape |
|
assert text_embeddings.shape[1] == 77 |
|
assert cap_logger_3.out == "" |
|
|
|
def test_stable_diffusion_height_width_opt(self): |
|
components = self.get_dummy_components() |
|
components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config) |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "hey" |
|
|
|
output = sd_pipe(prompt, num_inference_steps=1, output_type="np") |
|
image_shape = output.images[0].shape[:2] |
|
assert image_shape == (64, 64) |
|
|
|
output = sd_pipe(prompt, num_inference_steps=1, height=96, width=96, output_type="np") |
|
image_shape = output.images[0].shape[:2] |
|
assert image_shape == (96, 96) |
|
|
|
config = dict(sd_pipe.unet.config) |
|
config["sample_size"] = 96 |
|
sd_pipe.unet = UNet2DConditionModel.from_config(config).to(torch_device) |
|
output = sd_pipe(prompt, num_inference_steps=1, output_type="np") |
|
image_shape = output.images[0].shape[:2] |
|
assert image_shape == (192, 192) |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) |
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(expected_max_diff=3e-3) |
|
|
|
|
|
@skip_mps |
|
def test_freeu_enabled(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "hey" |
|
output = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images |
|
|
|
sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4) |
|
output_freeu = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images |
|
|
|
assert not np.allclose( |
|
output[0, -3:, -3:, -1], output_freeu[0, -3:, -3:, -1] |
|
), "Enabling of FreeU should lead to different results." |
|
|
|
def test_freeu_disabled(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "hey" |
|
output = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images |
|
|
|
sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4) |
|
sd_pipe.disable_freeu() |
|
|
|
freeu_keys = {"s1", "s2", "b1", "b2"} |
|
for upsample_block in sd_pipe.unet.up_blocks: |
|
for key in freeu_keys: |
|
assert getattr(upsample_block, key) is None, f"Disabling of FreeU should have set {key} to None." |
|
|
|
output_no_freeu = sd_pipe( |
|
prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0) |
|
).images |
|
|
|
assert np.allclose( |
|
output[0, -3:, -3:, -1], output_no_freeu[0, -3:, -3:, -1] |
|
), "Disabling of FreeU should lead to results similar to the default pipeline results." |
|
|
|
def test_fused_qkv_projections(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
original_image_slice = image[0, -3:, -3:, -1] |
|
|
|
sd_pipe.fuse_qkv_projections() |
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice_fused = image[0, -3:, -3:, -1] |
|
|
|
sd_pipe.unfuse_qkv_projections() |
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice_disabled = image[0, -3:, -3:, -1] |
|
|
|
assert np.allclose( |
|
original_image_slice, image_slice_fused, atol=1e-2, rtol=1e-2 |
|
), "Fusion of QKV projections shouldn't affect the outputs." |
|
assert np.allclose( |
|
image_slice_fused, image_slice_disabled, atol=1e-2, rtol=1e-2 |
|
), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." |
|
assert np.allclose( |
|
original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 |
|
), "Original outputs should match when fused QKV projections are disabled." |
|
|
|
def test_pipeline_interrupt(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "hey" |
|
num_inference_steps = 3 |
|
|
|
|
|
class PipelineState: |
|
def __init__(self): |
|
self.state = [] |
|
|
|
def apply(self, pipe, i, t, callback_kwargs): |
|
self.state.append(callback_kwargs["latents"]) |
|
return callback_kwargs |
|
|
|
pipe_state = PipelineState() |
|
sd_pipe( |
|
prompt, |
|
num_inference_steps=num_inference_steps, |
|
output_type="np", |
|
generator=torch.Generator("cpu").manual_seed(0), |
|
callback_on_step_end=pipe_state.apply, |
|
).images |
|
|
|
|
|
interrupt_step_idx = 1 |
|
|
|
def callback_on_step_end(pipe, i, t, callback_kwargs): |
|
if i == interrupt_step_idx: |
|
pipe._interrupt = True |
|
|
|
return callback_kwargs |
|
|
|
output_interrupted = sd_pipe( |
|
prompt, |
|
num_inference_steps=num_inference_steps, |
|
output_type="latent", |
|
generator=torch.Generator("cpu").manual_seed(0), |
|
callback_on_step_end=callback_on_step_end, |
|
).images |
|
|
|
|
|
|
|
intermediate_latent = pipe_state.state[interrupt_step_idx] |
|
|
|
|
|
|
|
assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionPipelineSlowTests(unittest.TestCase): |
|
def setUp(self): |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) |
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype) |
|
inputs = { |
|
"prompt": "a photograph of an astronaut riding a horse", |
|
"latents": latents, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"guidance_scale": 7.5, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_1_1_pndm(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1") |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.4363, 0.4355, 0.3667, 0.4066, 0.3970, 0.3866, 0.4394, 0.4356, 0.4059]) |
|
assert np.abs(image_slice - expected_slice).max() < 3e-3 |
|
|
|
def test_stable_diffusion_v1_4_with_freeu(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
inputs["num_inference_steps"] = 25 |
|
|
|
sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4) |
|
image = sd_pipe(**inputs).images |
|
image = image[0, -3:, -3:, -1].flatten() |
|
expected_image = [0.0721, 0.0588, 0.0268, 0.0384, 0.0636, 0.0, 0.0429, 0.0344, 0.0309] |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_stable_diffusion_1_4_pndm(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.5740, 0.4784, 0.3162, 0.6358, 0.5831, 0.5505, 0.5082, 0.5631, 0.5575]) |
|
assert np.abs(image_slice - expected_slice).max() < 3e-3 |
|
|
|
def test_stable_diffusion_ddim(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) |
|
sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239]) |
|
assert np.abs(image_slice - expected_slice).max() < 1e-4 |
|
|
|
def test_stable_diffusion_lms(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) |
|
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.10542, 0.09620, 0.07332, 0.09015, 0.09382, 0.07597, 0.08496, 0.07806, 0.06455]) |
|
assert np.abs(image_slice - expected_slice).max() < 3e-3 |
|
|
|
def test_stable_diffusion_dpm(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) |
|
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config( |
|
sd_pipe.scheduler.config, |
|
final_sigmas_type="sigma_min", |
|
) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.03503, 0.03494, 0.01087, 0.03128, 0.02552, 0.00803, 0.00742, 0.00372, 0.00000]) |
|
assert np.abs(image_slice - expected_slice).max() < 3e-3 |
|
|
|
def test_stable_diffusion_attention_slicing(self): |
|
torch.cuda.reset_peak_memory_stats() |
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) |
|
pipe.unet.set_default_attn_processor() |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
pipe.enable_attention_slicing() |
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
image_sliced = pipe(**inputs).images |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
assert mem_bytes < 3.75 * 10**9 |
|
|
|
|
|
pipe.disable_attention_slicing() |
|
pipe.unet.set_default_attn_processor() |
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
image = pipe(**inputs).images |
|
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
assert mem_bytes > 3.75 * 10**9 |
|
max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten()) |
|
assert max_diff < 1e-3 |
|
|
|
def test_stable_diffusion_vae_slicing(self): |
|
torch.cuda.reset_peak_memory_stats() |
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
|
|
pipe.enable_vae_slicing() |
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
inputs["prompt"] = [inputs["prompt"]] * 4 |
|
inputs["latents"] = torch.cat([inputs["latents"]] * 4) |
|
image_sliced = pipe(**inputs).images |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
assert mem_bytes < 4e9 |
|
|
|
|
|
pipe.disable_vae_slicing() |
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
inputs["prompt"] = [inputs["prompt"]] * 4 |
|
inputs["latents"] = torch.cat([inputs["latents"]] * 4) |
|
image = pipe(**inputs).images |
|
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
assert mem_bytes > 4e9 |
|
|
|
max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten()) |
|
assert max_diff < 1e-2 |
|
|
|
def test_stable_diffusion_vae_tiling(self): |
|
torch.cuda.reset_peak_memory_stats() |
|
model_id = "CompVis/stable-diffusion-v1-4" |
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
model_id, revision="fp16", torch_dtype=torch.float16, safety_checker=None |
|
) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
pipe.unet = pipe.unet.to(memory_format=torch.channels_last) |
|
pipe.vae = pipe.vae.to(memory_format=torch.channels_last) |
|
|
|
prompt = "a photograph of an astronaut riding a horse" |
|
|
|
|
|
pipe.enable_vae_tiling() |
|
pipe.enable_model_cpu_offload() |
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
output_chunked = pipe( |
|
[prompt], |
|
width=1024, |
|
height=1024, |
|
generator=generator, |
|
guidance_scale=7.5, |
|
num_inference_steps=2, |
|
output_type="np", |
|
) |
|
image_chunked = output_chunked.images |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
|
|
pipe.disable_vae_tiling() |
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
output = pipe( |
|
[prompt], |
|
width=1024, |
|
height=1024, |
|
generator=generator, |
|
guidance_scale=7.5, |
|
num_inference_steps=2, |
|
output_type="np", |
|
) |
|
image = output.images |
|
|
|
assert mem_bytes < 1e10 |
|
max_diff = numpy_cosine_similarity_distance(image_chunked.flatten(), image.flatten()) |
|
assert max_diff < 1e-2 |
|
|
|
def test_stable_diffusion_fp16_vs_autocast(self): |
|
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
image_fp16 = pipe(**inputs).images |
|
|
|
with torch.autocast(torch_device): |
|
inputs = self.get_inputs(torch_device) |
|
image_autocast = pipe(**inputs).images |
|
|
|
|
|
diff = np.abs(image_fp16.flatten() - image_autocast.flatten()) |
|
|
|
|
|
assert diff.mean() < 2e-2 |
|
|
|
def test_stable_diffusion_intermediate_state(self): |
|
number_of_steps = 0 |
|
|
|
def callback_fn(step: int, timestep: int, latents: torch.Tensor) -> None: |
|
callback_fn.has_been_called = True |
|
nonlocal number_of_steps |
|
number_of_steps += 1 |
|
if step == 1: |
|
latents = latents.detach().cpu().numpy() |
|
assert latents.shape == (1, 4, 64, 64) |
|
latents_slice = latents[0, -3:, -3:, -1] |
|
expected_slice = np.array( |
|
[-0.5693, -0.3018, -0.9746, 0.0518, -0.8770, 0.7559, -1.7402, 0.1022, 1.1582] |
|
) |
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 |
|
elif step == 2: |
|
latents = latents.detach().cpu().numpy() |
|
assert latents.shape == (1, 4, 64, 64) |
|
latents_slice = latents[0, -3:, -3:, -1] |
|
expected_slice = np.array( |
|
[-0.1958, -0.2993, -1.0166, -0.5005, -0.4810, 0.6162, -0.9492, 0.6621, 1.4492] |
|
) |
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 |
|
|
|
callback_fn.has_been_called = False |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
pipe(**inputs, callback=callback_fn, callback_steps=1) |
|
assert callback_fn.has_been_called |
|
assert number_of_steps == inputs["num_inference_steps"] |
|
|
|
def test_stable_diffusion_low_cpu_mem_usage(self): |
|
pipeline_id = "CompVis/stable-diffusion-v1-4" |
|
|
|
start_time = time.time() |
|
pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16) |
|
pipeline_low_cpu_mem_usage.to(torch_device) |
|
low_cpu_mem_usage_time = time.time() - start_time |
|
|
|
start_time = time.time() |
|
_ = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16, low_cpu_mem_usage=False) |
|
normal_load_time = time.time() - start_time |
|
|
|
assert 2 * low_cpu_mem_usage_time < normal_load_time |
|
|
|
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing(1) |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
_ = pipe(**inputs) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 2.8 * 10**9 |
|
|
|
def test_stable_diffusion_pipeline_with_model_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
|
|
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", |
|
torch_dtype=torch.float16, |
|
) |
|
pipe.unet.set_default_attn_processor() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
outputs = pipe(**inputs) |
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
|
|
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", |
|
torch_dtype=torch.float16, |
|
) |
|
pipe.unet.set_default_attn_processor() |
|
|
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
|
|
outputs_offloaded = pipe(**inputs) |
|
mem_bytes_offloaded = torch.cuda.max_memory_allocated() |
|
|
|
images = outputs.images |
|
offloaded_images = outputs_offloaded.images |
|
|
|
max_diff = numpy_cosine_similarity_distance(images.flatten(), offloaded_images.flatten()) |
|
assert max_diff < 1e-3 |
|
assert mem_bytes_offloaded < mem_bytes |
|
assert mem_bytes_offloaded < 3.5 * 10**9 |
|
for module in pipe.text_encoder, pipe.unet, pipe.vae: |
|
assert module.device == torch.device("cpu") |
|
|
|
|
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
pipe.enable_attention_slicing() |
|
_ = pipe(**inputs) |
|
mem_bytes_slicing = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes_slicing < mem_bytes_offloaded |
|
assert mem_bytes_slicing < 3 * 10**9 |
|
|
|
def test_stable_diffusion_textual_inversion(self): |
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") |
|
pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons") |
|
|
|
a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt") |
|
a111_file_neg = hf_hub_download( |
|
"hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt" |
|
) |
|
pipe.load_textual_inversion(a111_file) |
|
pipe.load_textual_inversion(a111_file_neg) |
|
pipe.to("cuda") |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(1) |
|
|
|
prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>" |
|
neg_prompt = "Style-Winter-neg" |
|
|
|
image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0] |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy" |
|
) |
|
|
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 8e-1 |
|
|
|
def test_stable_diffusion_textual_inversion_with_model_cpu_offload(self): |
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") |
|
pipe.enable_model_cpu_offload() |
|
pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons") |
|
|
|
a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt") |
|
a111_file_neg = hf_hub_download( |
|
"hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt" |
|
) |
|
pipe.load_textual_inversion(a111_file) |
|
pipe.load_textual_inversion(a111_file_neg) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(1) |
|
|
|
prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>" |
|
neg_prompt = "Style-Winter-neg" |
|
|
|
image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0] |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy" |
|
) |
|
|
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 8e-1 |
|
|
|
def test_stable_diffusion_textual_inversion_with_sequential_cpu_offload(self): |
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") |
|
pipe.enable_sequential_cpu_offload() |
|
pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons") |
|
|
|
a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt") |
|
a111_file_neg = hf_hub_download( |
|
"hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt" |
|
) |
|
pipe.load_textual_inversion(a111_file) |
|
pipe.load_textual_inversion(a111_file_neg) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(1) |
|
|
|
prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>" |
|
neg_prompt = "Style-Winter-neg" |
|
|
|
image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0] |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy" |
|
) |
|
|
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 8e-1 |
|
|
|
@require_python39_or_higher |
|
@require_torch_2 |
|
def test_stable_diffusion_compile(self): |
|
seed = 0 |
|
inputs = self.get_inputs(torch_device, seed=seed) |
|
|
|
del inputs["generator"] |
|
inputs["torch_device"] = torch_device |
|
inputs["seed"] = seed |
|
run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=inputs) |
|
|
|
def test_stable_diffusion_lcm(self): |
|
unet = UNet2DConditionModel.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", subfolder="unet") |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("Lykon/dreamshaper-7", unet=unet).to(torch_device) |
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
inputs["num_inference_steps"] = 6 |
|
inputs["output_type"] = "pil" |
|
|
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_full/stable_diffusion_lcm.png" |
|
) |
|
|
|
image = sd_pipe.image_processor.pil_to_numpy(image) |
|
expected_image = sd_pipe.image_processor.pil_to_numpy(expected_image) |
|
|
|
max_diff = numpy_cosine_similarity_distance(image.flatten(), expected_image.flatten()) |
|
|
|
assert max_diff < 1e-2 |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionPipelineCkptTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_download_from_hub(self): |
|
ckpt_paths = [ |
|
"https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors", |
|
"https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors", |
|
] |
|
|
|
for ckpt_path in ckpt_paths: |
|
pipe = StableDiffusionPipeline.from_single_file(ckpt_path, torch_dtype=torch.float16) |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe.to("cuda") |
|
|
|
image_out = pipe("test", num_inference_steps=1, output_type="np").images[0] |
|
|
|
assert image_out.shape == (512, 512, 3) |
|
|
|
def test_download_local(self): |
|
ckpt_filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-5-pruned-emaonly.safetensors") |
|
config_filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-inference.yaml") |
|
|
|
pipe = StableDiffusionPipeline.from_single_file( |
|
ckpt_filename, config_files={"v1": config_filename}, torch_dtype=torch.float16 |
|
) |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe.to("cuda") |
|
|
|
image_out = pipe("test", num_inference_steps=1, output_type="np").images[0] |
|
|
|
assert image_out.shape == (512, 512, 3) |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class StableDiffusionPipelineNightlyTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) |
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype) |
|
inputs = { |
|
"prompt": "a photograph of an astronaut riding a horse", |
|
"latents": latents, |
|
"generator": generator, |
|
"num_inference_steps": 50, |
|
"guidance_scale": 7.5, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_1_4_pndm(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_text2img/stable_diffusion_1_4_pndm.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_stable_diffusion_1_5_pndm(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_text2img/stable_diffusion_1_5_pndm.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_stable_diffusion_ddim(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device) |
|
sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_text2img/stable_diffusion_1_4_ddim.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 3e-3 |
|
|
|
def test_stable_diffusion_lms(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device) |
|
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_text2img/stable_diffusion_1_4_lms.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_stable_diffusion_euler(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device) |
|
sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_text2img/stable_diffusion_1_4_euler.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
|
|
|
|
@slow |
|
@require_torch_multi_gpu |
|
@require_accelerate_version_greater("0.27.0") |
|
class StableDiffusionPipelineDeviceMapTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, generator_device="cpu", seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "a photograph of an astronaut riding a horse", |
|
"generator": generator, |
|
"num_inference_steps": 50, |
|
"guidance_scale": 7.5, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def get_pipeline_output_without_device_map(self): |
|
sd_pipe = StableDiffusionPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 |
|
).to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=True) |
|
inputs = self.get_inputs() |
|
no_device_map_image = sd_pipe(**inputs).images |
|
|
|
del sd_pipe |
|
|
|
return no_device_map_image |
|
|
|
def test_forward_pass_balanced_device_map(self): |
|
no_device_map_image = self.get_pipeline_output_without_device_map() |
|
|
|
sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16 |
|
) |
|
sd_pipe_with_device_map.set_progress_bar_config(disable=True) |
|
inputs = self.get_inputs() |
|
device_map_image = sd_pipe_with_device_map(**inputs).images |
|
|
|
max_diff = np.abs(device_map_image - no_device_map_image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_components_put_in_right_devices(self): |
|
sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16 |
|
) |
|
|
|
assert len(set(sd_pipe_with_device_map.hf_device_map.values())) >= 2 |
|
|
|
def test_max_memory(self): |
|
no_device_map_image = self.get_pipeline_output_without_device_map() |
|
|
|
sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", |
|
device_map="balanced", |
|
max_memory={0: "1GB", 1: "1GB"}, |
|
torch_dtype=torch.float16, |
|
) |
|
sd_pipe_with_device_map.set_progress_bar_config(disable=True) |
|
inputs = self.get_inputs() |
|
device_map_image = sd_pipe_with_device_map(**inputs).images |
|
|
|
max_diff = np.abs(device_map_image - no_device_map_image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_reset_device_map(self): |
|
sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16 |
|
) |
|
sd_pipe_with_device_map.reset_device_map() |
|
|
|
assert sd_pipe_with_device_map.hf_device_map is None |
|
|
|
for name, component in sd_pipe_with_device_map.components.items(): |
|
if isinstance(component, torch.nn.Module): |
|
assert component.device.type == "cpu" |
|
|
|
def test_reset_device_map_to(self): |
|
sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16 |
|
) |
|
sd_pipe_with_device_map.reset_device_map() |
|
|
|
assert sd_pipe_with_device_map.hf_device_map is None |
|
|
|
|
|
pipe = sd_pipe_with_device_map.to("cuda") |
|
_ = pipe("hello", num_inference_steps=2) |
|
|
|
def test_reset_device_map_enable_model_cpu_offload(self): |
|
sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16 |
|
) |
|
sd_pipe_with_device_map.reset_device_map() |
|
|
|
assert sd_pipe_with_device_map.hf_device_map is None |
|
|
|
|
|
sd_pipe_with_device_map.enable_model_cpu_offload() |
|
_ = sd_pipe_with_device_map("hello", num_inference_steps=2) |
|
|
|
def test_reset_device_map_enable_sequential_cpu_offload(self): |
|
sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16 |
|
) |
|
sd_pipe_with_device_map.reset_device_map() |
|
|
|
assert sd_pipe_with_device_map.hf_device_map is None |
|
|
|
|
|
sd_pipe_with_device_map.enable_sequential_cpu_offload() |
|
_ = sd_pipe_with_device_map("hello", num_inference_steps=2) |
|
|