|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import traceback |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
AutoencoderTiny, |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
HeunDiscreteScheduler, |
|
LCMScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
StableDiffusionImg2ImgPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
load_image, |
|
load_numpy, |
|
nightly, |
|
require_python39_or_higher, |
|
require_torch_2, |
|
require_torch_gpu, |
|
run_test_in_subprocess, |
|
skip_mps, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import ( |
|
IMAGE_TO_IMAGE_IMAGE_PARAMS, |
|
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, |
|
TEXT_GUIDED_IMAGE_VARIATION_PARAMS, |
|
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, |
|
) |
|
from ..test_pipelines_common import ( |
|
IPAdapterTesterMixin, |
|
PipelineKarrasSchedulerTesterMixin, |
|
PipelineLatentTesterMixin, |
|
PipelineTesterMixin, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
|
|
def _test_img2img_compile(in_queue, out_queue, timeout): |
|
error = None |
|
try: |
|
inputs = in_queue.get(timeout=timeout) |
|
torch_device = inputs.pop("torch_device") |
|
seed = inputs.pop("seed") |
|
inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed) |
|
|
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe.unet.set_default_attn_processor() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.unet.to(memory_format=torch.channels_last) |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
|
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 768, 3) |
|
expected_slice = np.array([0.0606, 0.0570, 0.0805, 0.0579, 0.0628, 0.0623, 0.0843, 0.1115, 0.0806]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 1e-3 |
|
except Exception: |
|
error = f"{traceback.format_exc()}" |
|
|
|
results = {"error": error} |
|
out_queue.put(results, timeout=timeout) |
|
out_queue.join() |
|
|
|
|
|
class StableDiffusionImg2ImgPipelineFastTests( |
|
IPAdapterTesterMixin, |
|
PipelineLatentTesterMixin, |
|
PipelineKarrasSchedulerTesterMixin, |
|
PipelineTesterMixin, |
|
unittest.TestCase, |
|
): |
|
pipeline_class = StableDiffusionImg2ImgPipeline |
|
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} |
|
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} |
|
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS |
|
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS |
|
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS |
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
time_cond_proj_dim=time_cond_proj_dim, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
"image_encoder": None, |
|
} |
|
return components |
|
|
|
def get_dummy_tiny_autoencoder(self): |
|
return AutoencoderTiny(in_channels=3, out_channels=3, latent_channels=4) |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
image = image / 2 + 0.5 |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"image": image, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_img2img_default_case(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionImg2ImgPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.4555, 0.3216, 0.4049, 0.4620, 0.4618, 0.4126, 0.4122, 0.4629, 0.4579]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_img2img_default_case_lcm(self): |
|
device = "cpu" |
|
components = self.get_dummy_components(time_cond_proj_dim=256) |
|
sd_pipe = StableDiffusionImg2ImgPipeline(**components) |
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.5709, 0.4614, 0.4587, 0.5978, 0.5298, 0.6910, 0.6240, 0.5212, 0.5454]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_img2img_default_case_lcm_custom_timesteps(self): |
|
device = "cpu" |
|
components = self.get_dummy_components(time_cond_proj_dim=256) |
|
sd_pipe = StableDiffusionImg2ImgPipeline(**components) |
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
del inputs["num_inference_steps"] |
|
inputs["timesteps"] = [999, 499] |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.5709, 0.4614, 0.4587, 0.5978, 0.5298, 0.6910, 0.6240, 0.5212, 0.5454]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_img2img_negative_prompt(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionImg2ImgPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
negative_prompt = "french fries" |
|
output = sd_pipe(**inputs, negative_prompt=negative_prompt) |
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.4593, 0.3408, 0.4232, 0.4749, 0.4476, 0.4115, 0.4357, 0.4733, 0.4663]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_ip_adapter_single(self): |
|
expected_pipe_slice = None |
|
if torch_device == "cpu": |
|
expected_pipe_slice = np.array([0.4932, 0.5092, 0.5135, 0.5517, 0.5626, 0.6621, 0.6490, 0.5021, 0.5441]) |
|
return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice) |
|
|
|
def test_stable_diffusion_img2img_multiple_init_images(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionImg2ImgPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["prompt"] = [inputs["prompt"]] * 2 |
|
inputs["image"] = inputs["image"].repeat(2, 1, 1, 1) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[-1, -3:, -3:, -1] |
|
|
|
assert image.shape == (2, 32, 32, 3) |
|
expected_slice = np.array([0.4241, 0.5576, 0.5711, 0.4792, 0.4311, 0.5952, 0.5827, 0.5138, 0.5109]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_img2img_k_lms(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
components["scheduler"] = LMSDiscreteScheduler( |
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" |
|
) |
|
sd_pipe = StableDiffusionImg2ImgPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.4398, 0.4949, 0.4337, 0.6580, 0.5555, 0.4338, 0.5769, 0.5955, 0.5175]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_img2img_tiny_autoencoder(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionImg2ImgPipeline(**components) |
|
sd_pipe.vae = self.get_dummy_tiny_autoencoder() |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.00669, 0.00669, 0.0, 0.00693, 0.00858, 0.0, 0.00567, 0.00515, 0.00125]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
@skip_mps |
|
def test_save_load_local(self): |
|
return super().test_save_load_local() |
|
|
|
@skip_mps |
|
def test_dict_tuple_outputs_equivalent(self): |
|
return super().test_dict_tuple_outputs_equivalent() |
|
|
|
@skip_mps |
|
def test_save_load_optional_components(self): |
|
return super().test_save_load_optional_components() |
|
|
|
@skip_mps |
|
def test_attention_slicing_forward_pass(self): |
|
return super().test_attention_slicing_forward_pass(expected_max_diff=5e-3) |
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(expected_max_diff=3e-3) |
|
|
|
def test_float16_inference(self): |
|
super().test_float16_inference(expected_max_diff=5e-1) |
|
|
|
def test_pipeline_interrupt(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionImg2ImgPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
prompt = "hey" |
|
num_inference_steps = 3 |
|
|
|
|
|
class PipelineState: |
|
def __init__(self): |
|
self.state = [] |
|
|
|
def apply(self, pipe, i, t, callback_kwargs): |
|
self.state.append(callback_kwargs["latents"]) |
|
return callback_kwargs |
|
|
|
pipe_state = PipelineState() |
|
sd_pipe( |
|
prompt, |
|
image=inputs["image"], |
|
num_inference_steps=num_inference_steps, |
|
output_type="np", |
|
generator=torch.Generator("cpu").manual_seed(0), |
|
callback_on_step_end=pipe_state.apply, |
|
).images |
|
|
|
|
|
interrupt_step_idx = 1 |
|
|
|
def callback_on_step_end(pipe, i, t, callback_kwargs): |
|
if i == interrupt_step_idx: |
|
pipe._interrupt = True |
|
|
|
return callback_kwargs |
|
|
|
output_interrupted = sd_pipe( |
|
prompt, |
|
image=inputs["image"], |
|
num_inference_steps=num_inference_steps, |
|
output_type="latent", |
|
generator=torch.Generator("cpu").manual_seed(0), |
|
callback_on_step_end=callback_on_step_end, |
|
).images |
|
|
|
|
|
|
|
intermediate_latent = pipe_state.state[interrupt_step_idx] |
|
|
|
|
|
|
|
assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_img2img/sketch-mountains-input.png" |
|
) |
|
inputs = { |
|
"prompt": "a fantasy landscape, concept art, high resolution", |
|
"image": init_image, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"strength": 0.75, |
|
"guidance_scale": 7.5, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_img2img_default(self): |
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 768, 3) |
|
expected_slice = np.array([0.4300, 0.4662, 0.4930, 0.3990, 0.4307, 0.4525, 0.3719, 0.4064, 0.3923]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_img2img_k_lms(self): |
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 768, 3) |
|
expected_slice = np.array([0.0389, 0.0346, 0.0415, 0.0290, 0.0218, 0.0210, 0.0408, 0.0567, 0.0271]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_img2img_ddim(self): |
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 768, 3) |
|
expected_slice = np.array([0.0593, 0.0607, 0.0851, 0.0582, 0.0636, 0.0721, 0.0751, 0.0981, 0.0781]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_img2img_intermediate_state(self): |
|
number_of_steps = 0 |
|
|
|
def callback_fn(step: int, timestep: int, latents: torch.Tensor) -> None: |
|
callback_fn.has_been_called = True |
|
nonlocal number_of_steps |
|
number_of_steps += 1 |
|
if step == 1: |
|
latents = latents.detach().cpu().numpy() |
|
assert latents.shape == (1, 4, 64, 96) |
|
latents_slice = latents[0, -3:, -3:, -1] |
|
expected_slice = np.array([-0.4958, 0.5107, 1.1045, 2.7539, 4.6680, 3.8320, 1.5049, 1.8633, 2.6523]) |
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 |
|
elif step == 2: |
|
latents = latents.detach().cpu().numpy() |
|
assert latents.shape == (1, 4, 64, 96) |
|
latents_slice = latents[0, -3:, -3:, -1] |
|
expected_slice = np.array([-0.4956, 0.5078, 1.0918, 2.7520, 4.6484, 3.8125, 1.5146, 1.8633, 2.6367]) |
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 |
|
|
|
callback_fn.has_been_called = False |
|
|
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
pipe(**inputs, callback=callback_fn, callback_steps=1) |
|
assert callback_fn.has_been_called |
|
assert number_of_steps == 2 |
|
|
|
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing(1) |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
_ = pipe(**inputs) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 2.2 * 10**9 |
|
|
|
def test_stable_diffusion_pipeline_with_model_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
|
|
|
|
|
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", |
|
safety_checker=None, |
|
torch_dtype=torch.float16, |
|
) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe(**inputs) |
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
|
|
|
|
|
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", |
|
safety_checker=None, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
_ = pipe(**inputs) |
|
mem_bytes_offloaded = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes_offloaded < mem_bytes |
|
for module in pipe.text_encoder, pipe.unet, pipe.vae: |
|
assert module.device == torch.device("cpu") |
|
|
|
def test_img2img_2nd_order(self): |
|
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") |
|
sd_pipe.scheduler = HeunDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
inputs["num_inference_steps"] = 10 |
|
inputs["strength"] = 0.75 |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/img2img_heun.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 5e-2 |
|
|
|
inputs = self.get_inputs(torch_device) |
|
inputs["num_inference_steps"] = 11 |
|
inputs["strength"] = 0.75 |
|
image_other = sd_pipe(**inputs).images[0] |
|
|
|
mean_diff = np.abs(image - image_other).mean() |
|
|
|
|
|
assert mean_diff < 5e-2 |
|
|
|
def test_stable_diffusion_img2img_pipeline_multiple_of_8(self): |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/img2img/sketch-mountains-input.jpg" |
|
) |
|
|
|
init_image = init_image.resize((760, 504)) |
|
|
|
model_id = "CompVis/stable-diffusion-v1-4" |
|
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( |
|
model_id, |
|
safety_checker=None, |
|
) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
prompt = "A fantasy landscape, trending on artstation" |
|
|
|
generator = torch.manual_seed(0) |
|
output = pipe( |
|
prompt=prompt, |
|
image=init_image, |
|
strength=0.75, |
|
guidance_scale=7.5, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
image = output.images[0] |
|
|
|
image_slice = image[255:258, 383:386, -1] |
|
|
|
assert image.shape == (504, 760, 3) |
|
expected_slice = np.array([0.9393, 0.9500, 0.9399, 0.9438, 0.9458, 0.9400, 0.9455, 0.9414, 0.9423]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 |
|
|
|
def test_img2img_safety_checker_works(self): |
|
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
inputs["num_inference_steps"] = 20 |
|
|
|
inputs["prompt"] = "naked, sex, porn" |
|
out = sd_pipe(**inputs) |
|
|
|
assert out.nsfw_content_detected[0], f"Safety checker should work for prompt: {inputs['prompt']}" |
|
assert np.abs(out.images[0]).sum() < 1e-5 |
|
|
|
@require_python39_or_higher |
|
@require_torch_2 |
|
def test_img2img_compile(self): |
|
seed = 0 |
|
inputs = self.get_inputs(torch_device, seed=seed) |
|
|
|
del inputs["generator"] |
|
inputs["torch_device"] = torch_device |
|
inputs["seed"] = seed |
|
run_test_in_subprocess(test_case=self, target_func=_test_img2img_compile, inputs=inputs) |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_img2img/sketch-mountains-input.png" |
|
) |
|
inputs = { |
|
"prompt": "a fantasy landscape, concept art, high resolution", |
|
"image": init_image, |
|
"generator": generator, |
|
"num_inference_steps": 50, |
|
"strength": 0.75, |
|
"guidance_scale": 7.5, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_img2img_pndm(self): |
|
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_img2img/stable_diffusion_1_5_pndm.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_img2img_ddim(self): |
|
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") |
|
sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_img2img/stable_diffusion_1_5_ddim.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_img2img_lms(self): |
|
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") |
|
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_img2img/stable_diffusion_1_5_lms.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_img2img_dpm(self): |
|
sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") |
|
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
inputs["num_inference_steps"] = 30 |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_img2img/stable_diffusion_1_5_dpm.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|