|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import traceback |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from huggingface_hub import hf_hub_download |
|
from PIL import Image |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AsymmetricAutoencoderKL, |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
LCMScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
StableDiffusionInpaintPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
load_image, |
|
load_numpy, |
|
nightly, |
|
require_python39_or_higher, |
|
require_torch_2, |
|
require_torch_gpu, |
|
run_test_in_subprocess, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import ( |
|
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, |
|
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, |
|
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, |
|
) |
|
from ..test_pipelines_common import ( |
|
IPAdapterTesterMixin, |
|
PipelineKarrasSchedulerTesterMixin, |
|
PipelineLatentTesterMixin, |
|
PipelineTesterMixin, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
|
|
def _test_inpaint_compile(in_queue, out_queue, timeout): |
|
error = None |
|
try: |
|
inputs = in_queue.get(timeout=timeout) |
|
torch_device = inputs.pop("torch_device") |
|
seed = inputs.pop("seed") |
|
inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed) |
|
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.unet.set_default_attn_processor() |
|
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
pipe.unet.to(memory_format=torch.channels_last) |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
|
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.0689, 0.0699, 0.0790, 0.0536, 0.0470, 0.0488, 0.041, 0.0508, 0.04179]) |
|
assert np.abs(expected_slice - image_slice).max() < 3e-3 |
|
except Exception: |
|
error = f"{traceback.format_exc()}" |
|
|
|
results = {"error": error} |
|
out_queue.put(results, timeout=timeout) |
|
out_queue.join() |
|
|
|
|
|
class StableDiffusionInpaintPipelineFastTests( |
|
IPAdapterTesterMixin, |
|
PipelineLatentTesterMixin, |
|
PipelineKarrasSchedulerTesterMixin, |
|
PipelineTesterMixin, |
|
unittest.TestCase, |
|
): |
|
pipeline_class = StableDiffusionInpaintPipeline |
|
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS |
|
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS |
|
image_params = frozenset([]) |
|
|
|
image_latents_params = frozenset([]) |
|
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"mask", "masked_image_latents"}) |
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
time_cond_proj_dim=time_cond_proj_dim, |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=9, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
"image_encoder": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0, img_res=64, output_pil=True): |
|
|
|
if output_pil: |
|
|
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
image = image.cpu().permute(0, 2, 3, 1)[0] |
|
mask_image = torch.ones_like(image) |
|
|
|
image = 255 * image |
|
mask_image = 255 * mask_image |
|
|
|
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((img_res, img_res)) |
|
mask_image = Image.fromarray(np.uint8(mask_image)).convert("RGB").resize((img_res, img_res)) |
|
else: |
|
|
|
image = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device) |
|
|
|
init_image = 2.0 * image - 1.0 |
|
mask_image = torch.ones((1, 1, img_res, img_res), device=device) |
|
|
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"image": init_image, |
|
"mask_image": mask_image, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_inpaint(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionInpaintPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.4703, 0.5697, 0.3879, 0.5470, 0.6042, 0.4413, 0.5078, 0.4728, 0.4469]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_inpaint_lcm(self): |
|
device = "cpu" |
|
components = self.get_dummy_components(time_cond_proj_dim=256) |
|
sd_pipe = StableDiffusionInpaintPipeline(**components) |
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.4931, 0.5988, 0.4569, 0.5556, 0.6650, 0.5087, 0.5966, 0.5358, 0.5269]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_inpaint_lcm_custom_timesteps(self): |
|
device = "cpu" |
|
components = self.get_dummy_components(time_cond_proj_dim=256) |
|
sd_pipe = StableDiffusionInpaintPipeline(**components) |
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
del inputs["num_inference_steps"] |
|
inputs["timesteps"] = [999, 499] |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.4931, 0.5988, 0.4569, 0.5556, 0.6650, 0.5087, 0.5966, 0.5358, 0.5269]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_inpaint_image_tensor(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionInpaintPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs) |
|
out_pil = output.images |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["image"] = torch.tensor(np.array(inputs["image"]) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0) |
|
inputs["mask_image"] = torch.tensor(np.array(inputs["mask_image"]) / 255).permute(2, 0, 1)[:1].unsqueeze(0) |
|
output = sd_pipe(**inputs) |
|
out_tensor = output.images |
|
|
|
assert out_pil.shape == (1, 64, 64, 3) |
|
assert np.abs(out_pil.flatten() - out_tensor.flatten()).max() < 5e-2 |
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(expected_max_diff=3e-3) |
|
|
|
def test_stable_diffusion_inpaint_strength_zero_test(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionInpaintPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
|
|
|
|
inputs["strength"] = 0.01 |
|
with self.assertRaises(ValueError): |
|
sd_pipe(**inputs).images |
|
|
|
def test_stable_diffusion_inpaint_mask_latents(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components).to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["strength"] = 0.9 |
|
out_0 = sd_pipe(**inputs).images |
|
|
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe.image_processor.preprocess(inputs["image"]).to(sd_pipe.device) |
|
mask = sd_pipe.mask_processor.preprocess(inputs["mask_image"]).to(sd_pipe.device) |
|
masked_image = image * (mask < 0.5) |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image_latents = ( |
|
sd_pipe.vae.encode(image).latent_dist.sample(generator=generator) * sd_pipe.vae.config.scaling_factor |
|
) |
|
torch.randn((1, 4, 32, 32), generator=generator) |
|
mask_latents = ( |
|
sd_pipe.vae.encode(masked_image).latent_dist.sample(generator=generator) |
|
* sd_pipe.vae.config.scaling_factor |
|
) |
|
inputs["image"] = image_latents |
|
inputs["masked_image_latents"] = mask_latents |
|
inputs["mask_image"] = mask |
|
inputs["strength"] = 0.9 |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
torch.randn((1, 4, 32, 32), generator=generator) |
|
inputs["generator"] = generator |
|
out_1 = sd_pipe(**inputs).images |
|
assert np.abs(out_0 - out_1).max() < 1e-2 |
|
|
|
def test_pipeline_interrupt(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionInpaintPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
prompt = "hey" |
|
num_inference_steps = 3 |
|
|
|
|
|
class PipelineState: |
|
def __init__(self): |
|
self.state = [] |
|
|
|
def apply(self, pipe, i, t, callback_kwargs): |
|
self.state.append(callback_kwargs["latents"]) |
|
return callback_kwargs |
|
|
|
pipe_state = PipelineState() |
|
sd_pipe( |
|
prompt, |
|
image=inputs["image"], |
|
mask_image=inputs["mask_image"], |
|
num_inference_steps=num_inference_steps, |
|
output_type="np", |
|
generator=torch.Generator("cpu").manual_seed(0), |
|
callback_on_step_end=pipe_state.apply, |
|
).images |
|
|
|
|
|
interrupt_step_idx = 1 |
|
|
|
def callback_on_step_end(pipe, i, t, callback_kwargs): |
|
if i == interrupt_step_idx: |
|
pipe._interrupt = True |
|
|
|
return callback_kwargs |
|
|
|
output_interrupted = sd_pipe( |
|
prompt, |
|
image=inputs["image"], |
|
mask_image=inputs["mask_image"], |
|
num_inference_steps=num_inference_steps, |
|
output_type="latent", |
|
generator=torch.Generator("cpu").manual_seed(0), |
|
callback_on_step_end=callback_on_step_end, |
|
).images |
|
|
|
|
|
|
|
intermediate_latent = pipe_state.state[interrupt_step_idx] |
|
|
|
|
|
|
|
assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4) |
|
|
|
def test_ip_adapter_single(self, from_simple=False, expected_pipe_slice=None): |
|
if not from_simple: |
|
expected_pipe_slice = None |
|
if torch_device == "cpu": |
|
expected_pipe_slice = np.array( |
|
[0.4390, 0.5452, 0.3772, 0.5448, 0.6031, 0.4480, 0.5194, 0.4687, 0.4640] |
|
) |
|
return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice) |
|
|
|
|
|
class StableDiffusionSimpleInpaintPipelineFastTests(StableDiffusionInpaintPipelineFastTests): |
|
pipeline_class = StableDiffusionInpaintPipeline |
|
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS |
|
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS |
|
image_params = frozenset([]) |
|
|
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
time_cond_proj_dim=time_cond_proj_dim, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
"image_encoder": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs_2images(self, device, seed=0, img_res=64): |
|
|
|
image1 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device) |
|
image2 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed + 22)).to(device) |
|
|
|
init_image1 = 2.0 * image1 - 1.0 |
|
init_image2 = 2.0 * image2 - 1.0 |
|
|
|
|
|
mask_image = torch.zeros((1, 1, img_res, img_res), device=device) |
|
|
|
if str(device).startswith("mps"): |
|
generator1 = torch.manual_seed(seed) |
|
generator2 = torch.manual_seed(seed) |
|
else: |
|
generator1 = torch.Generator(device=device).manual_seed(seed) |
|
generator2 = torch.Generator(device=device).manual_seed(seed) |
|
|
|
inputs = { |
|
"prompt": ["A painting of a squirrel eating a burger"] * 2, |
|
"image": [init_image1, init_image2], |
|
"mask_image": [mask_image] * 2, |
|
"generator": [generator1, generator2], |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_ip_adapter_single(self): |
|
expected_pipe_slice = None |
|
if torch_device == "cpu": |
|
expected_pipe_slice = np.array([0.6345, 0.5395, 0.5611, 0.5403, 0.5830, 0.5855, 0.5193, 0.5443, 0.5211]) |
|
return super().test_ip_adapter_single(from_simple=True, expected_pipe_slice=expected_pipe_slice) |
|
|
|
def test_stable_diffusion_inpaint(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionInpaintPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.6584, 0.5424, 0.5649, 0.5449, 0.5897, 0.6111, 0.5404, 0.5463, 0.5214]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_inpaint_lcm(self): |
|
device = "cpu" |
|
components = self.get_dummy_components(time_cond_proj_dim=256) |
|
sd_pipe = StableDiffusionInpaintPipeline(**components) |
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.6240, 0.5355, 0.5649, 0.5378, 0.5374, 0.6242, 0.5132, 0.5347, 0.5396]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_inpaint_lcm_custom_timesteps(self): |
|
device = "cpu" |
|
components = self.get_dummy_components(time_cond_proj_dim=256) |
|
sd_pipe = StableDiffusionInpaintPipeline(**components) |
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
del inputs["num_inference_steps"] |
|
inputs["timesteps"] = [999, 499] |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.6240, 0.5355, 0.5649, 0.5378, 0.5374, 0.6242, 0.5132, 0.5347, 0.5396]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_inpaint_2_images(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
inputs = self.get_dummy_inputs(device) |
|
gen1 = torch.Generator(device=device).manual_seed(0) |
|
gen2 = torch.Generator(device=device).manual_seed(0) |
|
for name in ["prompt", "image", "mask_image"]: |
|
inputs[name] = [inputs[name]] * 2 |
|
inputs["generator"] = [gen1, gen2] |
|
images = sd_pipe(**inputs).images |
|
|
|
assert images.shape == (2, 64, 64, 3) |
|
|
|
image_slice1 = images[0, -3:, -3:, -1] |
|
image_slice2 = images[1, -3:, -3:, -1] |
|
assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() < 1e-4 |
|
|
|
|
|
inputs = self.get_dummy_inputs_2images(device) |
|
images = sd_pipe(**inputs).images |
|
assert images.shape == (2, 64, 64, 3) |
|
|
|
image_slice1 = images[0, -3:, -3:, -1] |
|
image_slice2 = images[1, -3:, -3:, -1] |
|
assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() > 1e-2 |
|
|
|
def test_stable_diffusion_inpaint_euler(self): |
|
device = "cpu" |
|
components = self.get_dummy_components(time_cond_proj_dim=256) |
|
sd_pipe = StableDiffusionInpaintPipeline(**components) |
|
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device, output_pil=False) |
|
half_dim = inputs["image"].shape[2] // 2 |
|
inputs["mask_image"][0, 0, :half_dim, :half_dim] = 0 |
|
|
|
inputs["num_inference_steps"] = 4 |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
expected_slice = np.array( |
|
[[0.6387283, 0.5564158, 0.58631873, 0.5539942, 0.5494673, 0.6461868, 0.5251618, 0.5497595, 0.5508756]] |
|
) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-4 |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/input_bench_image.png" |
|
) |
|
mask_image = load_image( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/input_bench_mask.png" |
|
) |
|
inputs = { |
|
"prompt": "Face of a yellow cat, high resolution, sitting on a park bench", |
|
"image": init_image, |
|
"mask_image": mask_image, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"guidance_scale": 7.5, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_inpaint_ddim(self): |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.0427, 0.0460, 0.0483, 0.0460, 0.0584, 0.0521, 0.1549, 0.1695, 0.1794]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 6e-4 |
|
|
|
def test_stable_diffusion_inpaint_fp16(self): |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None |
|
) |
|
pipe.unet.set_default_attn_processor() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.1509, 0.1245, 0.1672, 0.1655, 0.1519, 0.1226, 0.1462, 0.1567, 0.2451]) |
|
assert np.abs(expected_slice - image_slice).max() < 1e-1 |
|
|
|
def test_stable_diffusion_inpaint_pndm(self): |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 5e-3 |
|
|
|
def test_stable_diffusion_inpaint_k_lms(self): |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.9314, 0.7575, 0.9432, 0.8885, 0.9028, 0.7298, 0.9811, 0.9667, 0.7633]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 6e-3 |
|
|
|
def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing(1) |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
_ = pipe(**inputs) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 2.2 * 10**9 |
|
|
|
@require_python39_or_higher |
|
@require_torch_2 |
|
def test_inpaint_compile(self): |
|
seed = 0 |
|
inputs = self.get_inputs(torch_device, seed=seed) |
|
|
|
del inputs["generator"] |
|
inputs["torch_device"] = torch_device |
|
inputs["seed"] = seed |
|
run_test_in_subprocess(test_case=self, target_func=_test_inpaint_compile, inputs=inputs) |
|
|
|
def test_stable_diffusion_inpaint_pil_input_resolution_test(self): |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
|
|
inputs["image"] = inputs["image"].resize((127, 127)) |
|
inputs["mask_image"] = inputs["mask_image"].resize((127, 127)) |
|
inputs["height"] = 128 |
|
inputs["width"] = 128 |
|
image = pipe(**inputs).images |
|
|
|
assert image.shape == (1, inputs["height"], inputs["width"], 3) |
|
|
|
def test_stable_diffusion_inpaint_strength_test(self): |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.unet.set_default_attn_processor() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
|
|
inputs["strength"] = 0.75 |
|
image = pipe(**inputs).images |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
expected_slice = np.array([0.2728, 0.2803, 0.2665, 0.2511, 0.2774, 0.2586, 0.2391, 0.2392, 0.2582]) |
|
assert np.abs(expected_slice - image_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_simple_inpaint_ddim(self): |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None) |
|
pipe.unet.set_default_attn_processor() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
|
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.3757, 0.3875, 0.4445, 0.4353, 0.3780, 0.4513, 0.3965, 0.3984, 0.4362]) |
|
assert np.abs(expected_slice - image_slice).max() < 1e-3 |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionInpaintPipelineAsymmetricAutoencoderKLSlowTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/input_bench_image.png" |
|
) |
|
mask_image = load_image( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/input_bench_mask.png" |
|
) |
|
inputs = { |
|
"prompt": "Face of a yellow cat, high resolution, sitting on a park bench", |
|
"image": init_image, |
|
"mask_image": mask_image, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"guidance_scale": 7.5, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_inpaint_ddim(self): |
|
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5") |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.vae = vae |
|
pipe.unet.set_default_attn_processor() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.0522, 0.0604, 0.0596, 0.0449, 0.0493, 0.0427, 0.1186, 0.1289, 0.1442]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_inpaint_fp16(self): |
|
vae = AsymmetricAutoencoderKL.from_pretrained( |
|
"cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16 |
|
) |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None |
|
) |
|
pipe.unet.set_default_attn_processor() |
|
pipe.vae = vae |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.1343, 0.1406, 0.1440, 0.1504, 0.1729, 0.0989, 0.1807, 0.2822, 0.1179]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 5e-2 |
|
|
|
def test_stable_diffusion_inpaint_pndm(self): |
|
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5") |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.unet.set_default_attn_processor() |
|
pipe.vae = vae |
|
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.0966, 0.1083, 0.1148, 0.1422, 0.1318, 0.1197, 0.3702, 0.3537, 0.3288]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 5e-3 |
|
|
|
def test_stable_diffusion_inpaint_k_lms(self): |
|
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5") |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.unet.set_default_attn_processor() |
|
pipe.vae = vae |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.8931, 0.8683, 0.8965, 0.8501, 0.8592, 0.9118, 0.8734, 0.7463, 0.8990]) |
|
assert np.abs(expected_slice - image_slice).max() < 6e-3 |
|
|
|
def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
vae = AsymmetricAutoencoderKL.from_pretrained( |
|
"cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16 |
|
) |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe.vae = vae |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing(1) |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16) |
|
_ = pipe(**inputs) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 2.45 * 10**9 |
|
|
|
@require_python39_or_higher |
|
@require_torch_2 |
|
def test_inpaint_compile(self): |
|
pass |
|
|
|
def test_stable_diffusion_inpaint_pil_input_resolution_test(self): |
|
vae = AsymmetricAutoencoderKL.from_pretrained( |
|
"cross-attention/asymmetric-autoencoder-kl-x-1-5", |
|
) |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.vae = vae |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
|
|
inputs["image"] = inputs["image"].resize((127, 127)) |
|
inputs["mask_image"] = inputs["mask_image"].resize((127, 127)) |
|
inputs["height"] = 128 |
|
inputs["width"] = 128 |
|
image = pipe(**inputs).images |
|
|
|
assert image.shape == (1, inputs["height"], inputs["width"], 3) |
|
|
|
def test_stable_diffusion_inpaint_strength_test(self): |
|
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5") |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", safety_checker=None |
|
) |
|
pipe.unet.set_default_attn_processor() |
|
pipe.vae = vae |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
|
|
inputs["strength"] = 0.75 |
|
image = pipe(**inputs).images |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
expected_slice = np.array([0.2458, 0.2576, 0.3124, 0.2679, 0.2669, 0.2796, 0.2872, 0.2975, 0.2661]) |
|
assert np.abs(expected_slice - image_slice).max() < 3e-3 |
|
|
|
def test_stable_diffusion_simple_inpaint_ddim(self): |
|
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5") |
|
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None) |
|
pipe.vae = vae |
|
pipe.unet.set_default_attn_processor() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
|
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.3296, 0.4041, 0.4097, 0.4145, 0.4342, 0.4152, 0.4927, 0.4931, 0.4430]) |
|
assert np.abs(expected_slice - image_slice).max() < 1e-3 |
|
|
|
def test_download_local(self): |
|
vae = AsymmetricAutoencoderKL.from_pretrained( |
|
"cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16 |
|
) |
|
filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt") |
|
|
|
pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16) |
|
pipe.vae = vae |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe.to("cuda") |
|
|
|
inputs = self.get_inputs(torch_device) |
|
inputs["num_inference_steps"] = 1 |
|
image_out = pipe(**inputs).images[0] |
|
|
|
assert image_out.shape == (512, 512, 3) |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class StableDiffusionInpaintPipelineNightlyTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/input_bench_image.png" |
|
) |
|
mask_image = load_image( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/input_bench_mask.png" |
|
) |
|
inputs = { |
|
"prompt": "Face of a yellow cat, high resolution, sitting on a park bench", |
|
"image": init_image, |
|
"mask_image": mask_image, |
|
"generator": generator, |
|
"num_inference_steps": 50, |
|
"guidance_scale": 7.5, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_inpaint_ddim(self): |
|
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/stable_diffusion_inpaint_ddim.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_inpaint_pndm(self): |
|
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") |
|
sd_pipe.scheduler = PNDMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/stable_diffusion_inpaint_pndm.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_inpaint_lms(self): |
|
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") |
|
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/stable_diffusion_inpaint_lms.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_inpaint_dpm(self): |
|
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting") |
|
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
inputs["num_inference_steps"] = 30 |
|
image = sd_pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_inpaint/stable_diffusion_inpaint_dpm_multi.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|