|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from transformers import ( |
|
CLIPTextConfig, |
|
CLIPTextModel, |
|
CLIPTokenizer, |
|
DPTConfig, |
|
DPTFeatureExtractor, |
|
DPTForDepthEstimation, |
|
) |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
StableDiffusionDepth2ImgPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.utils import is_accelerate_available, is_accelerate_version |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
load_image, |
|
load_numpy, |
|
nightly, |
|
require_torch_gpu, |
|
skip_mps, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import ( |
|
IMAGE_TO_IMAGE_IMAGE_PARAMS, |
|
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, |
|
TEXT_GUIDED_IMAGE_VARIATION_PARAMS, |
|
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, |
|
TEXT_TO_IMAGE_IMAGE_PARAMS, |
|
) |
|
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
@skip_mps |
|
class StableDiffusionDepth2ImgPipelineFastTests( |
|
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase |
|
): |
|
pipeline_class = StableDiffusionDepth2ImgPipeline |
|
test_save_load_optional_components = False |
|
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} |
|
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} |
|
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS |
|
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"depth_mask"}) |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=5, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
attention_head_dim=(2, 4), |
|
use_linear_projection=True, |
|
) |
|
scheduler = PNDMScheduler(skip_prk_steps=True) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
backbone_config = { |
|
"global_padding": "same", |
|
"layer_type": "bottleneck", |
|
"depths": [3, 4, 9], |
|
"out_features": ["stage1", "stage2", "stage3"], |
|
"embedding_dynamic_padding": True, |
|
"hidden_sizes": [96, 192, 384, 768], |
|
"num_groups": 2, |
|
} |
|
depth_estimator_config = DPTConfig( |
|
image_size=32, |
|
patch_size=16, |
|
num_channels=3, |
|
hidden_size=32, |
|
num_hidden_layers=4, |
|
backbone_out_indices=(0, 1, 2, 3), |
|
num_attention_heads=4, |
|
intermediate_size=37, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
is_decoder=False, |
|
initializer_range=0.02, |
|
is_hybrid=True, |
|
backbone_config=backbone_config, |
|
backbone_featmap_shape=[1, 384, 24, 24], |
|
) |
|
depth_estimator = DPTForDepthEstimation(depth_estimator_config).eval() |
|
feature_extractor = DPTFeatureExtractor.from_pretrained( |
|
"hf-internal-testing/tiny-random-DPTForDepthEstimation" |
|
) |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"depth_estimator": depth_estimator, |
|
"feature_extractor": feature_extractor, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)) |
|
image = image.cpu().permute(0, 2, 3, 1)[0] |
|
image = Image.fromarray(np.uint8(image)).convert("RGB").resize((32, 32)) |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"image": image, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_save_load_local(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output = pipe(**inputs)[0] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
pipe.save_pretrained(tmpdir) |
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) |
|
pipe_loaded.to(torch_device) |
|
pipe_loaded.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_loaded = pipe_loaded(**inputs)[0] |
|
|
|
max_diff = np.abs(output - output_loaded).max() |
|
self.assertLess(max_diff, 1e-4) |
|
|
|
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA") |
|
def test_save_load_float16(self): |
|
components = self.get_dummy_components() |
|
for name, module in components.items(): |
|
if hasattr(module, "half"): |
|
components[name] = module.to(torch_device).half() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output = pipe(**inputs)[0] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
pipe.save_pretrained(tmpdir) |
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16) |
|
pipe_loaded.to(torch_device) |
|
pipe_loaded.set_progress_bar_config(disable=None) |
|
|
|
for name, component in pipe_loaded.components.items(): |
|
if hasattr(component, "dtype"): |
|
self.assertTrue( |
|
component.dtype == torch.float16, |
|
f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.", |
|
) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_loaded = pipe_loaded(**inputs)[0] |
|
|
|
max_diff = np.abs(output - output_loaded).max() |
|
self.assertLess(max_diff, 2e-2, "The output of the fp16 pipeline changed after saving and loading.") |
|
|
|
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA") |
|
def test_float16_inference(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
for name, module in components.items(): |
|
if hasattr(module, "half"): |
|
components[name] = module.half() |
|
pipe_fp16 = self.pipeline_class(**components) |
|
pipe_fp16.to(torch_device) |
|
pipe_fp16.set_progress_bar_config(disable=None) |
|
|
|
output = pipe(**self.get_dummy_inputs(torch_device))[0] |
|
output_fp16 = pipe_fp16(**self.get_dummy_inputs(torch_device))[0] |
|
|
|
max_diff = np.abs(output - output_fp16).max() |
|
self.assertLess(max_diff, 1.3e-2, "The outputs of the fp16 and fp32 pipelines are too different.") |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.14.0"), |
|
reason="CPU offload is only available with CUDA and `accelerate v0.14.0` or higher", |
|
) |
|
def test_cpu_offload_forward_pass(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_without_offload = pipe(**inputs)[0] |
|
|
|
pipe.enable_sequential_cpu_offload() |
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_with_offload = pipe(**inputs)[0] |
|
|
|
max_diff = np.abs(output_with_offload - output_without_offload).max() |
|
self.assertLess(max_diff, 1e-4, "CPU offloading should not affect the inference results") |
|
|
|
def test_dict_tuple_outputs_equivalent(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
output = pipe(**self.get_dummy_inputs(torch_device))[0] |
|
output_tuple = pipe(**self.get_dummy_inputs(torch_device), return_dict=False)[0] |
|
|
|
max_diff = np.abs(output - output_tuple).max() |
|
self.assertLess(max_diff, 1e-4) |
|
|
|
def test_progress_bar(self): |
|
super().test_progress_bar() |
|
|
|
def test_stable_diffusion_depth2img_default_case(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
pipe = StableDiffusionDepth2ImgPipeline(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
if torch_device == "mps": |
|
expected_slice = np.array([0.6071, 0.5035, 0.4378, 0.5776, 0.5753, 0.4316, 0.4513, 0.5263, 0.4546]) |
|
else: |
|
expected_slice = np.array([0.5435, 0.4992, 0.3783, 0.4411, 0.5842, 0.4654, 0.3786, 0.5077, 0.4655]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_depth2img_negative_prompt(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
pipe = StableDiffusionDepth2ImgPipeline(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
negative_prompt = "french fries" |
|
output = pipe(**inputs, negative_prompt=negative_prompt) |
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
if torch_device == "mps": |
|
expected_slice = np.array([0.6296, 0.5125, 0.3890, 0.4456, 0.5955, 0.4621, 0.3810, 0.5310, 0.4626]) |
|
else: |
|
expected_slice = np.array([0.6012, 0.4507, 0.3769, 0.4121, 0.5566, 0.4585, 0.3803, 0.5045, 0.4631]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_depth2img_multiple_init_images(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
pipe = StableDiffusionDepth2ImgPipeline(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["prompt"] = [inputs["prompt"]] * 2 |
|
inputs["image"] = 2 * [inputs["image"]] |
|
image = pipe(**inputs).images |
|
image_slice = image[-1, -3:, -3:, -1] |
|
|
|
assert image.shape == (2, 32, 32, 3) |
|
|
|
if torch_device == "mps": |
|
expected_slice = np.array([0.6501, 0.5150, 0.4939, 0.6688, 0.5437, 0.5758, 0.5115, 0.4406, 0.4551]) |
|
else: |
|
expected_slice = np.array([0.6557, 0.6214, 0.6254, 0.5775, 0.4785, 0.5949, 0.5904, 0.4785, 0.4730]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_depth2img_pil(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
pipe = StableDiffusionDepth2ImgPipeline(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
|
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
if torch_device == "mps": |
|
expected_slice = np.array([0.53232, 0.47015, 0.40868, 0.45651, 0.4891, 0.4668, 0.4287, 0.48822, 0.47439]) |
|
else: |
|
expected_slice = np.array([0.5435, 0.4992, 0.3783, 0.4411, 0.5842, 0.4654, 0.3786, 0.5077, 0.4655]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
@skip_mps |
|
def test_attention_slicing_forward_pass(self): |
|
return super().test_attention_slicing_forward_pass() |
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(expected_max_diff=7e-3) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionDepth2ImgPipelineSlowTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/depth2img/two_cats.png" |
|
) |
|
inputs = { |
|
"prompt": "two tigers", |
|
"image": init_image, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"strength": 0.75, |
|
"guidance_scale": 7.5, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_depth2img_pipeline_default(self): |
|
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-2-depth", safety_checker=None |
|
) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs() |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 480, 640, 3) |
|
expected_slice = np.array([0.5435, 0.4992, 0.3783, 0.4411, 0.5842, 0.4654, 0.3786, 0.5077, 0.4655]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 6e-1 |
|
|
|
def test_stable_diffusion_depth2img_pipeline_k_lms(self): |
|
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-2-depth", safety_checker=None |
|
) |
|
pipe.unet.set_default_attn_processor() |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs() |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 480, 640, 3) |
|
expected_slice = np.array([0.6363, 0.6274, 0.6309, 0.6370, 0.6226, 0.6286, 0.6213, 0.6453, 0.6306]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 8e-4 |
|
|
|
def test_stable_diffusion_depth2img_pipeline_ddim(self): |
|
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-2-depth", safety_checker=None |
|
) |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs() |
|
image = pipe(**inputs).images |
|
image_slice = image[0, 253:256, 253:256, -1].flatten() |
|
|
|
assert image.shape == (1, 480, 640, 3) |
|
expected_slice = np.array([0.6424, 0.6524, 0.6249, 0.6041, 0.6634, 0.6420, 0.6522, 0.6555, 0.6436]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 5e-4 |
|
|
|
def test_stable_diffusion_depth2img_intermediate_state(self): |
|
number_of_steps = 0 |
|
|
|
def callback_fn(step: int, timestep: int, latents: torch.Tensor) -> None: |
|
callback_fn.has_been_called = True |
|
nonlocal number_of_steps |
|
number_of_steps += 1 |
|
if step == 1: |
|
latents = latents.detach().cpu().numpy() |
|
assert latents.shape == (1, 4, 60, 80) |
|
latents_slice = latents[0, -3:, -3:, -1] |
|
expected_slice = np.array( |
|
[-0.7168, -1.5137, -0.1418, -2.9219, -2.7266, -2.4414, -2.1035, -3.0078, -1.7051] |
|
) |
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 |
|
elif step == 2: |
|
latents = latents.detach().cpu().numpy() |
|
assert latents.shape == (1, 4, 60, 80) |
|
latents_slice = latents[0, -3:, -3:, -1] |
|
expected_slice = np.array( |
|
[-0.7109, -1.5068, -0.1403, -2.9160, -2.7207, -2.4414, -2.1035, -3.0059, -1.7090] |
|
) |
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 |
|
|
|
callback_fn.has_been_called = False |
|
|
|
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-2-depth", safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(dtype=torch.float16) |
|
pipe(**inputs, callback=callback_fn, callback_steps=1) |
|
assert callback_fn.has_been_called |
|
assert number_of_steps == 2 |
|
|
|
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-2-depth", safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing(1) |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
inputs = self.get_inputs(dtype=torch.float16) |
|
_ = pipe(**inputs) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 2.9 * 10**9 |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/depth2img/two_cats.png" |
|
) |
|
inputs = { |
|
"prompt": "two tigers", |
|
"image": init_image, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"strength": 0.75, |
|
"guidance_scale": 7.5, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_depth2img_pndm(self): |
|
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth") |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs() |
|
image = pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_depth2img/stable_diffusion_2_0_pndm.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_depth2img_ddim(self): |
|
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth") |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs() |
|
image = pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_depth2img/stable_diffusion_2_0_ddim.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_img2img_lms(self): |
|
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth") |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs() |
|
image = pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_depth2img/stable_diffusion_2_0_lms.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_img2img_dpm(self): |
|
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth") |
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs() |
|
inputs["num_inference_steps"] = 30 |
|
image = pipe(**inputs).images[0] |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" |
|
"/stable_diffusion_depth2img/stable_diffusion_2_0_dpm_multi.npy" |
|
) |
|
max_diff = np.abs(expected_image - image).max() |
|
assert max_diff < 1e-3 |
|
|