svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
23.6 kB
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import (
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
DPTConfig,
DPTFeatureExtractor,
DPTForDepthEstimation,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionDepth2ImgPipeline,
UNet2DConditionModel,
)
from diffusers.utils import is_accelerate_available, is_accelerate_version
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
nightly,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
TEXT_TO_IMAGE_IMAGE_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
@skip_mps
class StableDiffusionDepth2ImgPipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionDepth2ImgPipeline
test_save_load_optional_components = False
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"depth_mask"})
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=5,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
attention_head_dim=(2, 4),
use_linear_projection=True,
)
scheduler = PNDMScheduler(skip_prk_steps=True)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
backbone_config = {
"global_padding": "same",
"layer_type": "bottleneck",
"depths": [3, 4, 9],
"out_features": ["stage1", "stage2", "stage3"],
"embedding_dynamic_padding": True,
"hidden_sizes": [96, 192, 384, 768],
"num_groups": 2,
}
depth_estimator_config = DPTConfig(
image_size=32,
patch_size=16,
num_channels=3,
hidden_size=32,
num_hidden_layers=4,
backbone_out_indices=(0, 1, 2, 3),
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
is_decoder=False,
initializer_range=0.02,
is_hybrid=True,
backbone_config=backbone_config,
backbone_featmap_shape=[1, 384, 24, 24],
)
depth_estimator = DPTForDepthEstimation(depth_estimator_config).eval()
feature_extractor = DPTFeatureExtractor.from_pretrained(
"hf-internal-testing/tiny-random-DPTForDepthEstimation"
)
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"depth_estimator": depth_estimator,
"feature_extractor": feature_extractor,
}
return components
def get_dummy_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed))
image = image.cpu().permute(0, 2, 3, 1)[0]
image = Image.fromarray(np.uint8(image)).convert("RGB").resize((32, 32))
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "np",
}
return inputs
def test_save_load_local(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(output - output_loaded).max()
self.assertLess(max_diff, 1e-4)
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
def test_save_load_float16(self):
components = self.get_dummy_components()
for name, module in components.items():
if hasattr(module, "half"):
components[name] = module.to(torch_device).half()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
for name, component in pipe_loaded.components.items():
if hasattr(component, "dtype"):
self.assertTrue(
component.dtype == torch.float16,
f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.",
)
inputs = self.get_dummy_inputs(torch_device)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(output - output_loaded).max()
self.assertLess(max_diff, 2e-2, "The output of the fp16 pipeline changed after saving and loading.")
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
def test_float16_inference(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
for name, module in components.items():
if hasattr(module, "half"):
components[name] = module.half()
pipe_fp16 = self.pipeline_class(**components)
pipe_fp16.to(torch_device)
pipe_fp16.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(torch_device))[0]
output_fp16 = pipe_fp16(**self.get_dummy_inputs(torch_device))[0]
max_diff = np.abs(output - output_fp16).max()
self.assertLess(max_diff, 1.3e-2, "The outputs of the fp16 and fp32 pipelines are too different.")
@unittest.skipIf(
torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.14.0"),
reason="CPU offload is only available with CUDA and `accelerate v0.14.0` or higher",
)
def test_cpu_offload_forward_pass(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output_without_offload = pipe(**inputs)[0]
pipe.enable_sequential_cpu_offload()
inputs = self.get_dummy_inputs(torch_device)
output_with_offload = pipe(**inputs)[0]
max_diff = np.abs(output_with_offload - output_without_offload).max()
self.assertLess(max_diff, 1e-4, "CPU offloading should not affect the inference results")
def test_dict_tuple_outputs_equivalent(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(torch_device))[0]
output_tuple = pipe(**self.get_dummy_inputs(torch_device), return_dict=False)[0]
max_diff = np.abs(output - output_tuple).max()
self.assertLess(max_diff, 1e-4)
def test_progress_bar(self):
super().test_progress_bar()
def test_stable_diffusion_depth2img_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = StableDiffusionDepth2ImgPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
if torch_device == "mps":
expected_slice = np.array([0.6071, 0.5035, 0.4378, 0.5776, 0.5753, 0.4316, 0.4513, 0.5263, 0.4546])
else:
expected_slice = np.array([0.5435, 0.4992, 0.3783, 0.4411, 0.5842, 0.4654, 0.3786, 0.5077, 0.4655])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_depth2img_negative_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = StableDiffusionDepth2ImgPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
negative_prompt = "french fries"
output = pipe(**inputs, negative_prompt=negative_prompt)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
if torch_device == "mps":
expected_slice = np.array([0.6296, 0.5125, 0.3890, 0.4456, 0.5955, 0.4621, 0.3810, 0.5310, 0.4626])
else:
expected_slice = np.array([0.6012, 0.4507, 0.3769, 0.4121, 0.5566, 0.4585, 0.3803, 0.5045, 0.4631])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_depth2img_multiple_init_images(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = StableDiffusionDepth2ImgPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["prompt"] = [inputs["prompt"]] * 2
inputs["image"] = 2 * [inputs["image"]]
image = pipe(**inputs).images
image_slice = image[-1, -3:, -3:, -1]
assert image.shape == (2, 32, 32, 3)
if torch_device == "mps":
expected_slice = np.array([0.6501, 0.5150, 0.4939, 0.6688, 0.5437, 0.5758, 0.5115, 0.4406, 0.4551])
else:
expected_slice = np.array([0.6557, 0.6214, 0.6254, 0.5775, 0.4785, 0.5949, 0.5904, 0.4785, 0.4730])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_depth2img_pil(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = StableDiffusionDepth2ImgPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
if torch_device == "mps":
expected_slice = np.array([0.53232, 0.47015, 0.40868, 0.45651, 0.4891, 0.4668, 0.4287, 0.48822, 0.47439])
else:
expected_slice = np.array([0.5435, 0.4992, 0.3783, 0.4411, 0.5842, 0.4654, 0.3786, 0.5077, 0.4655])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
@skip_mps
def test_attention_slicing_forward_pass(self):
return super().test_attention_slicing_forward_pass()
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=7e-3)
@slow
@require_torch_gpu
class StableDiffusionDepth2ImgPipelineSlowTests(unittest.TestCase):
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/depth2img/two_cats.png"
)
inputs = {
"prompt": "two tigers",
"image": init_image,
"generator": generator,
"num_inference_steps": 3,
"strength": 0.75,
"guidance_scale": 7.5,
"output_type": "np",
}
return inputs
def test_stable_diffusion_depth2img_pipeline_default(self):
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth", safety_checker=None
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 480, 640, 3)
expected_slice = np.array([0.5435, 0.4992, 0.3783, 0.4411, 0.5842, 0.4654, 0.3786, 0.5077, 0.4655])
assert np.abs(expected_slice - image_slice).max() < 6e-1
def test_stable_diffusion_depth2img_pipeline_k_lms(self):
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth", safety_checker=None
)
pipe.unet.set_default_attn_processor()
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 480, 640, 3)
expected_slice = np.array([0.6363, 0.6274, 0.6309, 0.6370, 0.6226, 0.6286, 0.6213, 0.6453, 0.6306])
assert np.abs(expected_slice - image_slice).max() < 8e-4
def test_stable_diffusion_depth2img_pipeline_ddim(self):
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth", safety_checker=None
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs()
image = pipe(**inputs).images
image_slice = image[0, 253:256, 253:256, -1].flatten()
assert image.shape == (1, 480, 640, 3)
expected_slice = np.array([0.6424, 0.6524, 0.6249, 0.6041, 0.6634, 0.6420, 0.6522, 0.6555, 0.6436])
assert np.abs(expected_slice - image_slice).max() < 5e-4
def test_stable_diffusion_depth2img_intermediate_state(self):
number_of_steps = 0
def callback_fn(step: int, timestep: int, latents: torch.Tensor) -> None:
callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 60, 80)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[-0.7168, -1.5137, -0.1418, -2.9219, -2.7266, -2.4414, -2.1035, -3.0078, -1.7051]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
elif step == 2:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 60, 80)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array(
[-0.7109, -1.5068, -0.1403, -2.9160, -2.7207, -2.4414, -2.1035, -3.0059, -1.7090]
)
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
callback_fn.has_been_called = False
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth", safety_checker=None, torch_dtype=torch.float16
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
inputs = self.get_inputs(dtype=torch.float16)
pipe(**inputs, callback=callback_fn, callback_steps=1)
assert callback_fn.has_been_called
assert number_of_steps == 2
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth", safety_checker=None, torch_dtype=torch.float16
)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
inputs = self.get_inputs(dtype=torch.float16)
_ = pipe(**inputs)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9
@nightly
@require_torch_gpu
class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/depth2img/two_cats.png"
)
inputs = {
"prompt": "two tigers",
"image": init_image,
"generator": generator,
"num_inference_steps": 3,
"strength": 0.75,
"guidance_scale": 7.5,
"output_type": "np",
}
return inputs
def test_depth2img_pndm(self):
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth")
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs()
image = pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_depth2img/stable_diffusion_2_0_pndm.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_depth2img_ddim(self):
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs()
image = pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_depth2img/stable_diffusion_2_0_ddim.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_img2img_lms(self):
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth")
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs()
image = pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_depth2img/stable_diffusion_2_0_lms.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_img2img_dpm(self):
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs()
inputs["num_inference_steps"] = 30
image = pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_depth2img/stable_diffusion_2_0_dpm_multi.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3