|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline |
|
from diffusers.utils import is_flax_available |
|
from diffusers.utils.testing_utils import nightly, require_flax |
|
|
|
|
|
if is_flax_available(): |
|
import jax |
|
import jax.numpy as jnp |
|
from flax.jax_utils import replicate |
|
from flax.training.common_utils import shard |
|
|
|
|
|
@nightly |
|
@require_flax |
|
class FlaxStableDiffusion2PipelineIntegrationTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
|
|
def test_stable_diffusion_flax(self): |
|
sd_pipe, params = FlaxStableDiffusionPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-2", |
|
revision="bf16", |
|
dtype=jnp.bfloat16, |
|
) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
num_samples = jax.device_count() |
|
prompt = num_samples * [prompt] |
|
prompt_ids = sd_pipe.prepare_inputs(prompt) |
|
|
|
params = replicate(params) |
|
prompt_ids = shard(prompt_ids) |
|
|
|
prng_seed = jax.random.PRNGKey(0) |
|
prng_seed = jax.random.split(prng_seed, jax.device_count()) |
|
|
|
images = sd_pipe(prompt_ids, params, prng_seed, num_inference_steps=25, jit=True)[0] |
|
assert images.shape == (jax.device_count(), 1, 768, 768, 3) |
|
|
|
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) |
|
image_slice = images[0, 253:256, 253:256, -1] |
|
|
|
output_slice = jnp.asarray(jax.device_get(image_slice.flatten())) |
|
expected_slice = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512]) |
|
print(f"output_slice: {output_slice}") |
|
assert jnp.abs(output_slice - expected_slice).max() < 1e-2 |
|
|
|
|
|
@nightly |
|
@require_flax |
|
class FlaxStableDiffusion2PipelineNightlyTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
|
|
def test_stable_diffusion_dpm_flax(self): |
|
model_id = "stabilityai/stable-diffusion-2" |
|
scheduler, scheduler_params = FlaxDPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler") |
|
sd_pipe, params = FlaxStableDiffusionPipeline.from_pretrained( |
|
model_id, |
|
scheduler=scheduler, |
|
revision="bf16", |
|
dtype=jnp.bfloat16, |
|
) |
|
params["scheduler"] = scheduler_params |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
num_samples = jax.device_count() |
|
prompt = num_samples * [prompt] |
|
prompt_ids = sd_pipe.prepare_inputs(prompt) |
|
|
|
params = replicate(params) |
|
prompt_ids = shard(prompt_ids) |
|
|
|
prng_seed = jax.random.PRNGKey(0) |
|
prng_seed = jax.random.split(prng_seed, jax.device_count()) |
|
|
|
images = sd_pipe(prompt_ids, params, prng_seed, num_inference_steps=25, jit=True)[0] |
|
assert images.shape == (jax.device_count(), 1, 768, 768, 3) |
|
|
|
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) |
|
image_slice = images[0, 253:256, 253:256, -1] |
|
|
|
output_slice = jnp.asarray(jax.device_get(image_slice.flatten())) |
|
expected_slice = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297]) |
|
print(f"output_slice: {output_slice}") |
|
assert jnp.abs(output_slice - expected_slice).max() < 1e-2 |
|
|