|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNet2DConditionModel |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
load_image, |
|
load_numpy, |
|
require_torch_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class StableDiffusionUpscalePipelineFastTests(unittest.TestCase): |
|
def setUp(self): |
|
|
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
@property |
|
def dummy_image(self): |
|
batch_size = 1 |
|
num_channels = 3 |
|
sizes = (32, 32) |
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) |
|
return image |
|
|
|
@property |
|
def dummy_cond_unet_upscale(self): |
|
torch.manual_seed(0) |
|
model = UNet2DConditionModel( |
|
block_out_channels=(32, 32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=7, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
|
|
attention_head_dim=8, |
|
use_linear_projection=True, |
|
only_cross_attention=(True, True, False), |
|
num_class_embeds=100, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_vae(self): |
|
torch.manual_seed(0) |
|
model = AutoencoderKL( |
|
block_out_channels=[32, 32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_text_encoder(self): |
|
torch.manual_seed(0) |
|
config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
|
|
hidden_act="gelu", |
|
projection_dim=512, |
|
) |
|
return CLIPTextModel(config) |
|
|
|
def test_stable_diffusion_upscale(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet_upscale |
|
low_res_scheduler = DDPMScheduler() |
|
scheduler = DDIMScheduler(prediction_type="v_prediction") |
|
vae = self.dummy_vae |
|
text_encoder = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] |
|
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) |
|
|
|
|
|
sd_pipe = StableDiffusionUpscalePipeline( |
|
unet=unet, |
|
low_res_scheduler=low_res_scheduler, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
max_noise_level=350, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe( |
|
[prompt], |
|
image=low_res_image, |
|
generator=generator, |
|
guidance_scale=6.0, |
|
noise_level=20, |
|
num_inference_steps=2, |
|
output_type="np", |
|
) |
|
|
|
image = output.images |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image_from_tuple = sd_pipe( |
|
[prompt], |
|
image=low_res_image, |
|
generator=generator, |
|
guidance_scale=6.0, |
|
noise_level=20, |
|
num_inference_steps=2, |
|
output_type="np", |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
expected_height_width = low_res_image.size[0] * 4 |
|
assert image.shape == (1, expected_height_width, expected_height_width, 3) |
|
expected_slice = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_upscale_batch(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet_upscale |
|
low_res_scheduler = DDPMScheduler() |
|
scheduler = DDIMScheduler(prediction_type="v_prediction") |
|
vae = self.dummy_vae |
|
text_encoder = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] |
|
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) |
|
|
|
|
|
sd_pipe = StableDiffusionUpscalePipeline( |
|
unet=unet, |
|
low_res_scheduler=low_res_scheduler, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
max_noise_level=350, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
output = sd_pipe( |
|
2 * [prompt], |
|
image=2 * [low_res_image], |
|
guidance_scale=6.0, |
|
noise_level=20, |
|
num_inference_steps=2, |
|
output_type="np", |
|
) |
|
image = output.images |
|
assert image.shape[0] == 2 |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe( |
|
[prompt], |
|
image=low_res_image, |
|
generator=generator, |
|
num_images_per_prompt=2, |
|
guidance_scale=6.0, |
|
noise_level=20, |
|
num_inference_steps=2, |
|
output_type="np", |
|
) |
|
image = output.images |
|
assert image.shape[0] == 2 |
|
|
|
def test_stable_diffusion_upscale_prompt_embeds(self): |
|
device = "cpu" |
|
unet = self.dummy_cond_unet_upscale |
|
low_res_scheduler = DDPMScheduler() |
|
scheduler = DDIMScheduler(prediction_type="v_prediction") |
|
vae = self.dummy_vae |
|
text_encoder = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] |
|
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) |
|
|
|
|
|
sd_pipe = StableDiffusionUpscalePipeline( |
|
unet=unet, |
|
low_res_scheduler=low_res_scheduler, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
max_noise_level=350, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = sd_pipe( |
|
[prompt], |
|
image=low_res_image, |
|
generator=generator, |
|
guidance_scale=6.0, |
|
noise_level=20, |
|
num_inference_steps=2, |
|
output_type="np", |
|
) |
|
|
|
image = output.images |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
prompt_embeds, negative_prompt_embeds = sd_pipe.encode_prompt(prompt, device, 1, False) |
|
if negative_prompt_embeds is not None: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
image_from_prompt_embeds = sd_pipe( |
|
prompt_embeds=prompt_embeds, |
|
image=[low_res_image], |
|
generator=generator, |
|
guidance_scale=6.0, |
|
noise_level=20, |
|
num_inference_steps=2, |
|
output_type="np", |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_prompt_embeds_slice = image_from_prompt_embeds[0, -3:, -3:, -1] |
|
|
|
expected_height_width = low_res_image.size[0] * 4 |
|
assert image.shape == (1, expected_height_width, expected_height_width, 3) |
|
expected_slice = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_prompt_embeds_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU") |
|
def test_stable_diffusion_upscale_fp16(self): |
|
"""Test that stable diffusion upscale works with fp16""" |
|
unet = self.dummy_cond_unet_upscale |
|
low_res_scheduler = DDPMScheduler() |
|
scheduler = DDIMScheduler(prediction_type="v_prediction") |
|
vae = self.dummy_vae |
|
text_encoder = self.dummy_text_encoder |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] |
|
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) |
|
|
|
|
|
unet = unet.half() |
|
text_encoder = text_encoder.half() |
|
|
|
|
|
sd_pipe = StableDiffusionUpscalePipeline( |
|
unet=unet, |
|
low_res_scheduler=low_res_scheduler, |
|
scheduler=scheduler, |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
max_noise_level=350, |
|
) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.manual_seed(0) |
|
image = sd_pipe( |
|
[prompt], |
|
image=low_res_image, |
|
generator=generator, |
|
num_inference_steps=2, |
|
output_type="np", |
|
).images |
|
|
|
expected_height_width = low_res_image.size[0] * 4 |
|
assert image.shape == (1, expected_height_width, expected_height_width, 3) |
|
|
|
def test_stable_diffusion_upscale_from_save_pretrained(self): |
|
pipes = [] |
|
|
|
device = "cpu" |
|
low_res_scheduler = DDPMScheduler() |
|
scheduler = DDIMScheduler(prediction_type="v_prediction") |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
|
|
sd_pipe = StableDiffusionUpscalePipeline( |
|
unet=self.dummy_cond_unet_upscale, |
|
low_res_scheduler=low_res_scheduler, |
|
scheduler=scheduler, |
|
vae=self.dummy_vae, |
|
text_encoder=self.dummy_text_encoder, |
|
tokenizer=tokenizer, |
|
max_noise_level=350, |
|
) |
|
sd_pipe = sd_pipe.to(device) |
|
pipes.append(sd_pipe) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
sd_pipe.save_pretrained(tmpdirname) |
|
sd_pipe = StableDiffusionUpscalePipeline.from_pretrained(tmpdirname).to(device) |
|
pipes.append(sd_pipe) |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0] |
|
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) |
|
|
|
image_slices = [] |
|
for pipe in pipes: |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image = pipe( |
|
[prompt], |
|
image=low_res_image, |
|
generator=generator, |
|
guidance_scale=6.0, |
|
noise_level=20, |
|
num_inference_steps=2, |
|
output_type="np", |
|
).images |
|
image_slices.append(image[0, -3:, -3:, -1].flatten()) |
|
|
|
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionUpscalePipelineIntegrationTests(unittest.TestCase): |
|
def setUp(self): |
|
|
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_stable_diffusion_upscale_pipeline(self): |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/sd2-upscale/low_res_cat.png" |
|
) |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" |
|
"/upsampled_cat.npy" |
|
) |
|
|
|
model_id = "stabilityai/stable-diffusion-x4-upscaler" |
|
pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
prompt = "a cat sitting on a park bench" |
|
|
|
generator = torch.manual_seed(0) |
|
output = pipe( |
|
prompt=prompt, |
|
image=image, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
image = output.images[0] |
|
|
|
assert image.shape == (512, 512, 3) |
|
assert np.abs(expected_image - image).max() < 1e-3 |
|
|
|
def test_stable_diffusion_upscale_pipeline_fp16(self): |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/sd2-upscale/low_res_cat.png" |
|
) |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" |
|
"/upsampled_cat_fp16.npy" |
|
) |
|
|
|
model_id = "stabilityai/stable-diffusion-x4-upscaler" |
|
pipe = StableDiffusionUpscalePipeline.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
prompt = "a cat sitting on a park bench" |
|
|
|
generator = torch.manual_seed(0) |
|
output = pipe( |
|
prompt=prompt, |
|
image=image, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
image = output.images[0] |
|
|
|
assert image.shape == (512, 512, 3) |
|
assert np.abs(expected_image - image).max() < 5e-1 |
|
|
|
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/sd2-upscale/low_res_cat.png" |
|
) |
|
|
|
model_id = "stabilityai/stable-diffusion-x4-upscaler" |
|
pipe = StableDiffusionUpscalePipeline.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing(1) |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
prompt = "a cat sitting on a park bench" |
|
|
|
generator = torch.manual_seed(0) |
|
_ = pipe( |
|
prompt=prompt, |
|
image=image, |
|
generator=generator, |
|
num_inference_steps=5, |
|
output_type="np", |
|
) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 2.9 * 10**9 |
|
|