svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
17.4 kB
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNet2DConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
slow,
torch_device,
)
enable_full_determinism()
class StableDiffusionUpscalePipelineFastTests(unittest.TestCase):
def setUp(self):
# clean up the VRAM before each test
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_cond_unet_upscale(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 32, 64),
layers_per_block=2,
sample_size=32,
in_channels=7,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
# SD2-specific config below
attention_head_dim=8,
use_linear_projection=True,
only_cross_attention=(True, True, False),
num_class_embeds=100,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=512,
)
return CLIPTextModel(config)
def test_stable_diffusion_upscale(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet_upscale
low_res_scheduler = DDPMScheduler()
scheduler = DDIMScheduler(prediction_type="v_prediction")
vae = self.dummy_vae
text_encoder = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionUpscalePipeline(
unet=unet,
low_res_scheduler=low_res_scheduler,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
max_noise_level=350,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
[prompt],
image=low_res_image,
generator=generator,
guidance_scale=6.0,
noise_level=20,
num_inference_steps=2,
output_type="np",
)
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
image=low_res_image,
generator=generator,
guidance_scale=6.0,
noise_level=20,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
expected_height_width = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
expected_slice = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_upscale_batch(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet_upscale
low_res_scheduler = DDPMScheduler()
scheduler = DDIMScheduler(prediction_type="v_prediction")
vae = self.dummy_vae
text_encoder = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionUpscalePipeline(
unet=unet,
low_res_scheduler=low_res_scheduler,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
max_noise_level=350,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
output = sd_pipe(
2 * [prompt],
image=2 * [low_res_image],
guidance_scale=6.0,
noise_level=20,
num_inference_steps=2,
output_type="np",
)
image = output.images
assert image.shape[0] == 2
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
[prompt],
image=low_res_image,
generator=generator,
num_images_per_prompt=2,
guidance_scale=6.0,
noise_level=20,
num_inference_steps=2,
output_type="np",
)
image = output.images
assert image.shape[0] == 2
def test_stable_diffusion_upscale_prompt_embeds(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet_upscale
low_res_scheduler = DDPMScheduler()
scheduler = DDIMScheduler(prediction_type="v_prediction")
vae = self.dummy_vae
text_encoder = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionUpscalePipeline(
unet=unet,
low_res_scheduler=low_res_scheduler,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
max_noise_level=350,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
[prompt],
image=low_res_image,
generator=generator,
guidance_scale=6.0,
noise_level=20,
num_inference_steps=2,
output_type="np",
)
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
prompt_embeds, negative_prompt_embeds = sd_pipe.encode_prompt(prompt, device, 1, False)
if negative_prompt_embeds is not None:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
image_from_prompt_embeds = sd_pipe(
prompt_embeds=prompt_embeds,
image=[low_res_image],
generator=generator,
guidance_scale=6.0,
noise_level=20,
num_inference_steps=2,
output_type="np",
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_prompt_embeds_slice = image_from_prompt_embeds[0, -3:, -3:, -1]
expected_height_width = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
expected_slice = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_prompt_embeds_slice.flatten() - expected_slice).max() < 1e-2
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_upscale_fp16(self):
"""Test that stable diffusion upscale works with fp16"""
unet = self.dummy_cond_unet_upscale
low_res_scheduler = DDPMScheduler()
scheduler = DDIMScheduler(prediction_type="v_prediction")
vae = self.dummy_vae
text_encoder = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
# put models in fp16, except vae as it overflows in fp16
unet = unet.half()
text_encoder = text_encoder.half()
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionUpscalePipeline(
unet=unet,
low_res_scheduler=low_res_scheduler,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
max_noise_level=350,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
image = sd_pipe(
[prompt],
image=low_res_image,
generator=generator,
num_inference_steps=2,
output_type="np",
).images
expected_height_width = low_res_image.size[0] * 4
assert image.shape == (1, expected_height_width, expected_height_width, 3)
def test_stable_diffusion_upscale_from_save_pretrained(self):
pipes = []
device = "cpu" # ensure determinism for the device-dependent torch.Generator
low_res_scheduler = DDPMScheduler()
scheduler = DDIMScheduler(prediction_type="v_prediction")
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionUpscalePipeline(
unet=self.dummy_cond_unet_upscale,
low_res_scheduler=low_res_scheduler,
scheduler=scheduler,
vae=self.dummy_vae,
text_encoder=self.dummy_text_encoder,
tokenizer=tokenizer,
max_noise_level=350,
)
sd_pipe = sd_pipe.to(device)
pipes.append(sd_pipe)
with tempfile.TemporaryDirectory() as tmpdirname:
sd_pipe.save_pretrained(tmpdirname)
sd_pipe = StableDiffusionUpscalePipeline.from_pretrained(tmpdirname).to(device)
pipes.append(sd_pipe)
prompt = "A painting of a squirrel eating a burger"
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
image_slices = []
for pipe in pipes:
generator = torch.Generator(device=device).manual_seed(0)
image = pipe(
[prompt],
image=low_res_image,
generator=generator,
guidance_scale=6.0,
noise_level=20,
num_inference_steps=2,
output_type="np",
).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
@slow
@require_torch_gpu
class StableDiffusionUpscalePipelineIntegrationTests(unittest.TestCase):
def setUp(self):
# clean up the VRAM before each test
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_upscale_pipeline(self):
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-upscale/low_res_cat.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"
"/upsampled_cat.npy"
)
model_id = "stabilityai/stable-diffusion-x4-upscaler"
pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "a cat sitting on a park bench"
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
image=image,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 1e-3
def test_stable_diffusion_upscale_pipeline_fp16(self):
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-upscale/low_res_cat.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"
"/upsampled_cat_fp16.npy"
)
model_id = "stabilityai/stable-diffusion-x4-upscaler"
pipe = StableDiffusionUpscalePipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "a cat sitting on a park bench"
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
image=image,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 5e-1
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-upscale/low_res_cat.png"
)
model_id = "stabilityai/stable-diffusion-x4-upscaler"
pipe = StableDiffusionUpscalePipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
prompt = "a cat sitting on a park bench"
generator = torch.manual_seed(0)
_ = pipe(
prompt=prompt,
image=image,
generator=generator,
num_inference_steps=5,
output_type="np",
)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.9 GB is allocated
assert mem_bytes < 2.9 * 10**9