diffusers-sdxl-controlnet
/
tests
/pipelines
/stable_diffusion_3
/test_pipeline_stable_diffusion_3.py
import gc | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel | |
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, SD3Transformer2DModel, StableDiffusion3Pipeline | |
from diffusers.utils.testing_utils import ( | |
numpy_cosine_similarity_distance, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
from ..test_pipelines_common import PipelineTesterMixin | |
class StableDiffusion3PipelineFastTests(unittest.TestCase, PipelineTesterMixin): | |
pipeline_class = StableDiffusion3Pipeline | |
params = frozenset( | |
[ | |
"prompt", | |
"height", | |
"width", | |
"guidance_scale", | |
"negative_prompt", | |
"prompt_embeds", | |
"negative_prompt_embeds", | |
] | |
) | |
batch_params = frozenset(["prompt", "negative_prompt"]) | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
transformer = SD3Transformer2DModel( | |
sample_size=32, | |
patch_size=1, | |
in_channels=4, | |
num_layers=1, | |
attention_head_dim=8, | |
num_attention_heads=4, | |
caption_projection_dim=32, | |
joint_attention_dim=32, | |
pooled_projection_dim=64, | |
out_channels=4, | |
) | |
clip_text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
hidden_act="gelu", | |
projection_dim=32, | |
) | |
torch.manual_seed(0) | |
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config) | |
torch.manual_seed(0) | |
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config) | |
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
sample_size=32, | |
in_channels=3, | |
out_channels=3, | |
block_out_channels=(4,), | |
layers_per_block=1, | |
latent_channels=4, | |
norm_num_groups=1, | |
use_quant_conv=False, | |
use_post_quant_conv=False, | |
shift_factor=0.0609, | |
scaling_factor=1.5035, | |
) | |
scheduler = FlowMatchEulerDiscreteScheduler() | |
return { | |
"scheduler": scheduler, | |
"text_encoder": text_encoder, | |
"text_encoder_2": text_encoder_2, | |
"text_encoder_3": text_encoder_3, | |
"tokenizer": tokenizer, | |
"tokenizer_2": tokenizer_2, | |
"tokenizer_3": tokenizer_3, | |
"transformer": transformer, | |
"vae": vae, | |
} | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 5.0, | |
"output_type": "np", | |
} | |
return inputs | |
def test_stable_diffusion_3_different_prompts(self): | |
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_same_prompt = pipe(**inputs).images[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["prompt_2"] = "a different prompt" | |
inputs["prompt_3"] = "another different prompt" | |
output_different_prompts = pipe(**inputs).images[0] | |
max_diff = np.abs(output_same_prompt - output_different_prompts).max() | |
# Outputs should be different here | |
assert max_diff > 1e-2 | |
def test_stable_diffusion_3_different_negative_prompts(self): | |
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_same_prompt = pipe(**inputs).images[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["negative_prompt_2"] = "deformed" | |
inputs["negative_prompt_3"] = "blurry" | |
output_different_prompts = pipe(**inputs).images[0] | |
max_diff = np.abs(output_same_prompt - output_different_prompts).max() | |
# Outputs should be different here | |
assert max_diff > 1e-2 | |
def test_stable_diffusion_3_prompt_embeds(self): | |
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_with_prompt = pipe(**inputs).images[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
prompt = inputs.pop("prompt") | |
do_classifier_free_guidance = inputs["guidance_scale"] > 1 | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = pipe.encode_prompt( | |
prompt, | |
prompt_2=None, | |
prompt_3=None, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
device=torch_device, | |
) | |
output_with_embeds = pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
**inputs, | |
).images[0] | |
max_diff = np.abs(output_with_prompt - output_with_embeds).max() | |
assert max_diff < 1e-4 | |
def test_fused_qkv_projections(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs).images | |
original_image_slice = image[0, -3:, -3:, -1] | |
pipe.transformer.fuse_qkv_projections() | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs).images | |
image_slice_fused = image[0, -3:, -3:, -1] | |
pipe.transformer.unfuse_qkv_projections() | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs).images | |
image_slice_disabled = image[0, -3:, -3:, -1] | |
assert np.allclose( | |
original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3 | |
), "Fusion of QKV projections shouldn't affect the outputs." | |
assert np.allclose( | |
image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3 | |
), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." | |
assert np.allclose( | |
original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 | |
), "Original outputs should match when fused QKV projections are disabled." | |
class StableDiffusion3PipelineSlowTests(unittest.TestCase): | |
pipeline_class = StableDiffusion3Pipeline | |
repo_id = "stabilityai/stable-diffusion-3-medium-diffusers" | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
return { | |
"prompt": "A photo of a cat", | |
"num_inference_steps": 2, | |
"guidance_scale": 5.0, | |
"output_type": "np", | |
"generator": generator, | |
} | |
def test_sd3_inference(self): | |
pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.float16) | |
pipe.enable_model_cpu_offload() | |
inputs = self.get_inputs(torch_device) | |
image = pipe(**inputs).images[0] | |
image_slice = image[0, :10, :10] | |
expected_slice = np.array( | |
[ | |
[0.36132812, 0.30004883, 0.25830078], | |
[0.36669922, 0.31103516, 0.23754883], | |
[0.34814453, 0.29248047, 0.23583984], | |
[0.35791016, 0.30981445, 0.23999023], | |
[0.36328125, 0.31274414, 0.2607422], | |
[0.37304688, 0.32177734, 0.26171875], | |
[0.3671875, 0.31933594, 0.25756836], | |
[0.36035156, 0.31103516, 0.2578125], | |
[0.3857422, 0.33789062, 0.27563477], | |
[0.3701172, 0.31982422, 0.265625], | |
], | |
dtype=np.float32, | |
) | |
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) | |
assert max_diff < 1e-4 | |