diffusers-sdxl-controlnet
/
tests
/pipelines
/stable_diffusion_ldm3d
/test_stable_diffusion_ldm3d.py
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
from diffusers import ( | |
AutoencoderKL, | |
DDIMScheduler, | |
PNDMScheduler, | |
StableDiffusionLDM3DPipeline, | |
UNet2DConditionModel, | |
) | |
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, torch_device | |
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS | |
enable_full_determinism() | |
class StableDiffusionLDM3DPipelineFastTests(unittest.TestCase): | |
pipeline_class = StableDiffusionLDM3DPipeline | |
params = TEXT_TO_IMAGE_PARAMS | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=32, | |
) | |
scheduler = DDIMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=6, | |
out_channels=6, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"safety_checker": None, | |
"feature_extractor": None, | |
"image_encoder": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"output_type": "np", | |
} | |
return inputs | |
def test_stable_diffusion_ddim(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
ldm3d_pipe = StableDiffusionLDM3DPipeline(**components) | |
ldm3d_pipe = ldm3d_pipe.to(torch_device) | |
ldm3d_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
output = ldm3d_pipe(**inputs) | |
rgb, depth = output.rgb, output.depth | |
image_slice_rgb = rgb[0, -3:, -3:, -1] | |
image_slice_depth = depth[0, -3:, -1] | |
assert rgb.shape == (1, 64, 64, 3) | |
assert depth.shape == (1, 64, 64) | |
expected_slice_rgb = np.array( | |
[0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262] | |
) | |
expected_slice_depth = np.array([103.46727, 85.812004, 87.849236]) | |
assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb).max() < 1e-2 | |
assert np.abs(image_slice_depth.flatten() - expected_slice_depth).max() < 1e-2 | |
def test_stable_diffusion_prompt_embeds(self): | |
components = self.get_dummy_components() | |
ldm3d_pipe = StableDiffusionLDM3DPipeline(**components) | |
ldm3d_pipe = ldm3d_pipe.to(torch_device) | |
ldm3d_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["prompt"] = 3 * [inputs["prompt"]] | |
# forward | |
output = ldm3d_pipe(**inputs) | |
rgb_slice_1, depth_slice_1 = output.rgb, output.depth | |
rgb_slice_1 = rgb_slice_1[0, -3:, -3:, -1] | |
depth_slice_1 = depth_slice_1[0, -3:, -1] | |
inputs = self.get_dummy_inputs(torch_device) | |
prompt = 3 * [inputs.pop("prompt")] | |
text_inputs = ldm3d_pipe.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=ldm3d_pipe.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_inputs = text_inputs["input_ids"].to(torch_device) | |
prompt_embeds = ldm3d_pipe.text_encoder(text_inputs)[0] | |
inputs["prompt_embeds"] = prompt_embeds | |
# forward | |
output = ldm3d_pipe(**inputs) | |
rgb_slice_2, depth_slice_2 = output.rgb, output.depth | |
rgb_slice_2 = rgb_slice_2[0, -3:, -3:, -1] | |
depth_slice_2 = depth_slice_2[0, -3:, -1] | |
assert np.abs(rgb_slice_1.flatten() - rgb_slice_2.flatten()).max() < 1e-4 | |
assert np.abs(depth_slice_1.flatten() - depth_slice_2.flatten()).max() < 1e-4 | |
def test_stable_diffusion_negative_prompt(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
components["scheduler"] = PNDMScheduler(skip_prk_steps=True) | |
ldm3d_pipe = StableDiffusionLDM3DPipeline(**components) | |
ldm3d_pipe = ldm3d_pipe.to(device) | |
ldm3d_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
negative_prompt = "french fries" | |
output = ldm3d_pipe(**inputs, negative_prompt=negative_prompt) | |
rgb, depth = output.rgb, output.depth | |
rgb_slice = rgb[0, -3:, -3:, -1] | |
depth_slice = depth[0, -3:, -1] | |
assert rgb.shape == (1, 64, 64, 3) | |
assert depth.shape == (1, 64, 64) | |
expected_slice_rgb = np.array( | |
[0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217] | |
) | |
expected_slice_depth = np.array([107.84738, 84.62802, 89.962135]) | |
assert np.abs(rgb_slice.flatten() - expected_slice_rgb).max() < 1e-2 | |
assert np.abs(depth_slice.flatten() - expected_slice_depth).max() < 1e-2 | |
class StableDiffusionLDM3DPipelineSlowTests(unittest.TestCase): | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): | |
generator = torch.Generator(device=generator_device).manual_seed(seed) | |
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) | |
latents = torch.from_numpy(latents).to(device=device, dtype=dtype) | |
inputs = { | |
"prompt": "a photograph of an astronaut riding a horse", | |
"latents": latents, | |
"generator": generator, | |
"num_inference_steps": 3, | |
"guidance_scale": 7.5, | |
"output_type": "np", | |
} | |
return inputs | |
def test_ldm3d_stable_diffusion(self): | |
ldm3d_pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d") | |
ldm3d_pipe = ldm3d_pipe.to(torch_device) | |
ldm3d_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs(torch_device) | |
output = ldm3d_pipe(**inputs) | |
rgb, depth = output.rgb, output.depth | |
rgb_slice = rgb[0, -3:, -3:, -1].flatten() | |
depth_slice = rgb[0, -3:, -1].flatten() | |
assert rgb.shape == (1, 512, 512, 3) | |
assert depth.shape == (1, 512, 512) | |
expected_slice_rgb = np.array( | |
[0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706] | |
) | |
expected_slice_depth = np.array( | |
[0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706] | |
) | |
assert np.abs(rgb_slice - expected_slice_rgb).max() < 3e-3 | |
assert np.abs(depth_slice - expected_slice_depth).max() < 3e-3 | |
class StableDiffusionPipelineNightlyTests(unittest.TestCase): | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): | |
generator = torch.Generator(device=generator_device).manual_seed(seed) | |
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) | |
latents = torch.from_numpy(latents).to(device=device, dtype=dtype) | |
inputs = { | |
"prompt": "a photograph of an astronaut riding a horse", | |
"latents": latents, | |
"generator": generator, | |
"num_inference_steps": 50, | |
"guidance_scale": 7.5, | |
"output_type": "np", | |
} | |
return inputs | |
def test_ldm3d(self): | |
ldm3d_pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d").to(torch_device) | |
ldm3d_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs(torch_device) | |
output = ldm3d_pipe(**inputs) | |
rgb, depth = output.rgb, output.depth | |
expected_rgb_mean = 0.495586 | |
expected_rgb_std = 0.33795515 | |
expected_depth_mean = 112.48518 | |
expected_depth_std = 98.489746 | |
assert np.abs(expected_rgb_mean - rgb.mean()) < 1e-3 | |
assert np.abs(expected_rgb_std - rgb.std()) < 1e-3 | |
assert np.abs(expected_depth_mean - depth.mean()) < 1e-3 | |
assert np.abs(expected_depth_std - depth.std()) < 1e-3 | |
def test_ldm3d_v2(self): | |
ldm3d_pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d-4c").to(torch_device) | |
ldm3d_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs(torch_device) | |
output = ldm3d_pipe(**inputs) | |
rgb, depth = output.rgb, output.depth | |
expected_rgb_mean = 0.4194127 | |
expected_rgb_std = 0.35375586 | |
expected_depth_mean = 0.5638502 | |
expected_depth_std = 0.34686103 | |
assert rgb.shape == (1, 512, 512, 3) | |
assert depth.shape == (1, 512, 512, 1) | |
assert np.abs(expected_rgb_mean - rgb.mean()) < 1e-3 | |
assert np.abs(expected_rgb_std - rgb.std()) < 1e-3 | |
assert np.abs(expected_depth_mean - depth.mean()) < 1e-3 | |
assert np.abs(expected_depth_std - depth.std()) < 1e-3 | |