|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import gc |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EulerDiscreteScheduler, |
|
HeunDiscreteScheduler, |
|
LCMScheduler, |
|
StableDiffusionXLImg2ImgPipeline, |
|
StableDiffusionXLPipeline, |
|
UNet2DConditionModel, |
|
UniPCMultistepScheduler, |
|
) |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
load_image, |
|
numpy_cosine_similarity_distance, |
|
require_torch_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import ( |
|
TEXT_TO_IMAGE_BATCH_PARAMS, |
|
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, |
|
TEXT_TO_IMAGE_IMAGE_PARAMS, |
|
TEXT_TO_IMAGE_PARAMS, |
|
) |
|
from ..test_pipelines_common import ( |
|
IPAdapterTesterMixin, |
|
PipelineLatentTesterMixin, |
|
PipelineTesterMixin, |
|
SDFunctionTesterMixin, |
|
SDXLOptionalComponentsTesterMixin, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class StableDiffusionXLPipelineFastTests( |
|
SDFunctionTesterMixin, |
|
IPAdapterTesterMixin, |
|
PipelineLatentTesterMixin, |
|
PipelineTesterMixin, |
|
SDXLOptionalComponentsTesterMixin, |
|
unittest.TestCase, |
|
): |
|
pipeline_class = StableDiffusionXLPipeline |
|
params = TEXT_TO_IMAGE_PARAMS |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"add_text_embeds", "add_time_ids"}) |
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(2, 4), |
|
layers_per_block=2, |
|
time_cond_proj_dim=time_cond_proj_dim, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
|
|
attention_head_dim=(2, 4), |
|
use_linear_projection=True, |
|
addition_embed_type="text_time", |
|
addition_time_embed_dim=8, |
|
transformer_layers_per_block=(1, 2), |
|
projection_class_embeddings_input_dim=80, |
|
cross_attention_dim=64, |
|
norm_num_groups=1, |
|
) |
|
scheduler = EulerDiscreteScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
steps_offset=1, |
|
beta_schedule="scaled_linear", |
|
timestep_spacing="leading", |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
sample_size=128, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
|
|
hidden_act="gelu", |
|
projection_dim=32, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) |
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"text_encoder_2": text_encoder_2, |
|
"tokenizer_2": tokenizer_2, |
|
"image_encoder": None, |
|
"feature_extractor": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 5.0, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_xl_euler(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionXLPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.5552, 0.5569, 0.4725, 0.4348, 0.4994, 0.4632, 0.5142, 0.5012, 0.47]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_xl_euler_lcm(self): |
|
device = "cpu" |
|
components = self.get_dummy_components(time_cond_proj_dim=256) |
|
sd_pipe = StableDiffusionXLPipeline(**components) |
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.4917, 0.6555, 0.4348, 0.5219, 0.7324, 0.4855, 0.5168, 0.5447, 0.5156]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_xl_euler_lcm_custom_timesteps(self): |
|
device = "cpu" |
|
components = self.get_dummy_components(time_cond_proj_dim=256) |
|
sd_pipe = StableDiffusionXLPipeline(**components) |
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
del inputs["num_inference_steps"] |
|
inputs["timesteps"] = [999, 499] |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.4917, 0.6555, 0.4348, 0.5219, 0.7324, 0.4855, 0.5168, 0.5447, 0.5156]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_ays(self): |
|
from diffusers.schedulers import AysSchedules |
|
|
|
timestep_schedule = AysSchedules["StableDiffusionXLTimesteps"] |
|
sigma_schedule = AysSchedules["StableDiffusionXLSigmas"] |
|
|
|
device = "cpu" |
|
|
|
components = self.get_dummy_components(time_cond_proj_dim=256) |
|
sd_pipe = StableDiffusionXLPipeline(**components) |
|
sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["num_inference_steps"] = 10 |
|
output = sd_pipe(**inputs).images |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["num_inference_steps"] = None |
|
inputs["timesteps"] = timestep_schedule |
|
output_ts = sd_pipe(**inputs).images |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["num_inference_steps"] = None |
|
inputs["sigmas"] = sigma_schedule |
|
output_sigmas = sd_pipe(**inputs).images |
|
|
|
assert ( |
|
np.abs(output_sigmas.flatten() - output_ts.flatten()).max() < 1e-3 |
|
), "ays timesteps and ays sigmas should have the same outputs" |
|
assert ( |
|
np.abs(output.flatten() - output_ts.flatten()).max() > 1e-3 |
|
), "use ays timesteps should have different outputs" |
|
assert ( |
|
np.abs(output.flatten() - output_sigmas.flatten()).max() > 1e-3 |
|
), "use ays sigmas should have different outputs" |
|
|
|
def test_stable_diffusion_xl_prompt_embeds(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionXLPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["prompt"] = 2 * [inputs["prompt"]] |
|
inputs["num_images_per_prompt"] = 2 |
|
|
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
prompt = 2 * [inputs.pop("prompt")] |
|
|
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = sd_pipe.encode_prompt(prompt) |
|
|
|
output = sd_pipe( |
|
**inputs, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|
|
def test_stable_diffusion_xl_negative_prompt_embeds(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionXLPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
negative_prompt = 3 * ["this is a negative prompt"] |
|
inputs["negative_prompt"] = negative_prompt |
|
inputs["prompt"] = 3 * [inputs["prompt"]] |
|
|
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
negative_prompt = 3 * ["this is a negative prompt"] |
|
prompt = 3 * [inputs.pop("prompt")] |
|
|
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = sd_pipe.encode_prompt(prompt, negative_prompt=negative_prompt) |
|
|
|
output = sd_pipe( |
|
**inputs, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|
|
def test_ip_adapter_single(self): |
|
expected_pipe_slice = None |
|
if torch_device == "cpu": |
|
expected_pipe_slice = np.array([0.5552, 0.5569, 0.4725, 0.4348, 0.4994, 0.4632, 0.5142, 0.5012, 0.4700]) |
|
return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice) |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) |
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(expected_max_diff=3e-3) |
|
|
|
def test_save_load_optional_components(self): |
|
self._test_save_load_optional_components() |
|
|
|
@require_torch_gpu |
|
def test_stable_diffusion_xl_offloads(self): |
|
pipes = [] |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionXLPipeline(**components).to(torch_device) |
|
pipes.append(sd_pipe) |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionXLPipeline(**components) |
|
sd_pipe.enable_model_cpu_offload() |
|
pipes.append(sd_pipe) |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionXLPipeline(**components) |
|
sd_pipe.enable_sequential_cpu_offload() |
|
pipes.append(sd_pipe) |
|
|
|
image_slices = [] |
|
for pipe in pipes: |
|
pipe.unet.set_default_attn_processor() |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
|
|
image_slices.append(image[0, -3:, -3:, -1].flatten()) |
|
|
|
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 |
|
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 |
|
|
|
def test_stable_diffusion_xl_img2img_prompt_embeds_only(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionXLPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
generator_device = "cpu" |
|
inputs = self.get_dummy_inputs(generator_device) |
|
inputs["prompt"] = 3 * [inputs["prompt"]] |
|
|
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
generator_device = "cpu" |
|
inputs = self.get_dummy_inputs(generator_device) |
|
prompt = 3 * [inputs.pop("prompt")] |
|
|
|
( |
|
prompt_embeds, |
|
_, |
|
pooled_prompt_embeds, |
|
_, |
|
) = sd_pipe.encode_prompt(prompt) |
|
|
|
output = sd_pipe( |
|
**inputs, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|
|
def test_stable_diffusion_two_xl_mixture_of_denoiser_fast(self): |
|
components = self.get_dummy_components() |
|
pipe_1 = StableDiffusionXLPipeline(**components).to(torch_device) |
|
pipe_1.unet.set_default_attn_processor() |
|
pipe_2 = StableDiffusionXLImg2ImgPipeline(**components).to(torch_device) |
|
pipe_2.unet.set_default_attn_processor() |
|
|
|
def assert_run_mixture( |
|
num_steps, |
|
split, |
|
scheduler_cls_orig, |
|
expected_tss, |
|
num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps, |
|
): |
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = num_steps |
|
|
|
class scheduler_cls(scheduler_cls_orig): |
|
pass |
|
|
|
pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config) |
|
pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config) |
|
|
|
|
|
pipe_1.scheduler.set_timesteps(num_steps) |
|
expected_steps = pipe_1.scheduler.timesteps.tolist() |
|
|
|
if pipe_1.scheduler.order == 2: |
|
expected_steps_1 = list(filter(lambda ts: ts >= split, expected_tss)) |
|
expected_steps_2 = expected_steps_1[-1:] + list(filter(lambda ts: ts < split, expected_tss)) |
|
expected_steps = expected_steps_1 + expected_steps_2 |
|
else: |
|
expected_steps_1 = list(filter(lambda ts: ts >= split, expected_tss)) |
|
expected_steps_2 = list(filter(lambda ts: ts < split, expected_tss)) |
|
|
|
|
|
|
|
done_steps = [] |
|
old_step = copy.copy(scheduler_cls.step) |
|
|
|
def new_step(self, *args, **kwargs): |
|
done_steps.append(args[1].cpu().item()) |
|
return old_step(self, *args, **kwargs) |
|
|
|
scheduler_cls.step = new_step |
|
|
|
inputs_1 = { |
|
**inputs, |
|
**{ |
|
"denoising_end": 1.0 - (split / num_train_timesteps), |
|
"output_type": "latent", |
|
}, |
|
} |
|
latents = pipe_1(**inputs_1).images[0] |
|
|
|
assert expected_steps_1 == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" |
|
|
|
inputs_2 = { |
|
**inputs, |
|
**{ |
|
"denoising_start": 1.0 - (split / num_train_timesteps), |
|
"image": latents, |
|
}, |
|
} |
|
pipe_2(**inputs_2).images[0] |
|
|
|
assert expected_steps_2 == done_steps[len(expected_steps_1) :] |
|
assert expected_steps == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" |
|
|
|
steps = 10 |
|
for split in [300, 700]: |
|
for scheduler_cls_timesteps in [ |
|
(EulerDiscreteScheduler, [901, 801, 701, 601, 501, 401, 301, 201, 101, 1]), |
|
( |
|
HeunDiscreteScheduler, |
|
[ |
|
901.0, |
|
801.0, |
|
801.0, |
|
701.0, |
|
701.0, |
|
601.0, |
|
601.0, |
|
501.0, |
|
501.0, |
|
401.0, |
|
401.0, |
|
301.0, |
|
301.0, |
|
201.0, |
|
201.0, |
|
101.0, |
|
101.0, |
|
1.0, |
|
1.0, |
|
], |
|
), |
|
]: |
|
assert_run_mixture(steps, split, scheduler_cls_timesteps[0], scheduler_cls_timesteps[1]) |
|
|
|
@slow |
|
def test_stable_diffusion_two_xl_mixture_of_denoiser(self): |
|
components = self.get_dummy_components() |
|
pipe_1 = StableDiffusionXLPipeline(**components).to(torch_device) |
|
pipe_1.unet.set_default_attn_processor() |
|
pipe_2 = StableDiffusionXLImg2ImgPipeline(**components).to(torch_device) |
|
pipe_2.unet.set_default_attn_processor() |
|
|
|
def assert_run_mixture( |
|
num_steps, |
|
split, |
|
scheduler_cls_orig, |
|
expected_tss, |
|
num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps, |
|
): |
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = num_steps |
|
|
|
class scheduler_cls(scheduler_cls_orig): |
|
pass |
|
|
|
pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config) |
|
pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config) |
|
|
|
|
|
pipe_1.scheduler.set_timesteps(num_steps) |
|
expected_steps = pipe_1.scheduler.timesteps.tolist() |
|
|
|
if pipe_1.scheduler.order == 2: |
|
expected_steps_1 = list(filter(lambda ts: ts >= split, expected_tss)) |
|
expected_steps_2 = expected_steps_1[-1:] + list(filter(lambda ts: ts < split, expected_tss)) |
|
expected_steps = expected_steps_1 + expected_steps_2 |
|
else: |
|
expected_steps_1 = list(filter(lambda ts: ts >= split, expected_tss)) |
|
expected_steps_2 = list(filter(lambda ts: ts < split, expected_tss)) |
|
|
|
|
|
|
|
done_steps = [] |
|
old_step = copy.copy(scheduler_cls.step) |
|
|
|
def new_step(self, *args, **kwargs): |
|
done_steps.append(args[1].cpu().item()) |
|
return old_step(self, *args, **kwargs) |
|
|
|
scheduler_cls.step = new_step |
|
|
|
inputs_1 = { |
|
**inputs, |
|
**{ |
|
"denoising_end": 1.0 - (split / num_train_timesteps), |
|
"output_type": "latent", |
|
}, |
|
} |
|
latents = pipe_1(**inputs_1).images[0] |
|
|
|
assert expected_steps_1 == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" |
|
|
|
inputs_2 = { |
|
**inputs, |
|
**{ |
|
"denoising_start": 1.0 - (split / num_train_timesteps), |
|
"image": latents, |
|
}, |
|
} |
|
pipe_2(**inputs_2).images[0] |
|
|
|
assert expected_steps_2 == done_steps[len(expected_steps_1) :] |
|
assert expected_steps == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" |
|
|
|
steps = 10 |
|
for split in [300, 500, 700]: |
|
for scheduler_cls_timesteps in [ |
|
(DDIMScheduler, [901, 801, 701, 601, 501, 401, 301, 201, 101, 1]), |
|
(EulerDiscreteScheduler, [901, 801, 701, 601, 501, 401, 301, 201, 101, 1]), |
|
(DPMSolverMultistepScheduler, [901, 811, 721, 631, 541, 451, 361, 271, 181, 91]), |
|
(UniPCMultistepScheduler, [901, 811, 721, 631, 541, 451, 361, 271, 181, 91]), |
|
( |
|
HeunDiscreteScheduler, |
|
[ |
|
901.0, |
|
801.0, |
|
801.0, |
|
701.0, |
|
701.0, |
|
601.0, |
|
601.0, |
|
501.0, |
|
501.0, |
|
401.0, |
|
401.0, |
|
301.0, |
|
301.0, |
|
201.0, |
|
201.0, |
|
101.0, |
|
101.0, |
|
1.0, |
|
1.0, |
|
], |
|
), |
|
]: |
|
assert_run_mixture(steps, split, scheduler_cls_timesteps[0], scheduler_cls_timesteps[1]) |
|
|
|
steps = 25 |
|
for split in [300, 500, 700]: |
|
for scheduler_cls_timesteps in [ |
|
( |
|
DDIMScheduler, |
|
[ |
|
961, |
|
921, |
|
881, |
|
841, |
|
801, |
|
761, |
|
721, |
|
681, |
|
641, |
|
601, |
|
561, |
|
521, |
|
481, |
|
441, |
|
401, |
|
361, |
|
321, |
|
281, |
|
241, |
|
201, |
|
161, |
|
121, |
|
81, |
|
41, |
|
1, |
|
], |
|
), |
|
( |
|
EulerDiscreteScheduler, |
|
[ |
|
961.0, |
|
921.0, |
|
881.0, |
|
841.0, |
|
801.0, |
|
761.0, |
|
721.0, |
|
681.0, |
|
641.0, |
|
601.0, |
|
561.0, |
|
521.0, |
|
481.0, |
|
441.0, |
|
401.0, |
|
361.0, |
|
321.0, |
|
281.0, |
|
241.0, |
|
201.0, |
|
161.0, |
|
121.0, |
|
81.0, |
|
41.0, |
|
1.0, |
|
], |
|
), |
|
( |
|
DPMSolverMultistepScheduler, |
|
[ |
|
951, |
|
913, |
|
875, |
|
837, |
|
799, |
|
761, |
|
723, |
|
685, |
|
647, |
|
609, |
|
571, |
|
533, |
|
495, |
|
457, |
|
419, |
|
381, |
|
343, |
|
305, |
|
267, |
|
229, |
|
191, |
|
153, |
|
115, |
|
77, |
|
39, |
|
], |
|
), |
|
( |
|
UniPCMultistepScheduler, |
|
[ |
|
951, |
|
913, |
|
875, |
|
837, |
|
799, |
|
761, |
|
723, |
|
685, |
|
647, |
|
609, |
|
571, |
|
533, |
|
495, |
|
457, |
|
419, |
|
381, |
|
343, |
|
305, |
|
267, |
|
229, |
|
191, |
|
153, |
|
115, |
|
77, |
|
39, |
|
], |
|
), |
|
( |
|
HeunDiscreteScheduler, |
|
[ |
|
961.0, |
|
921.0, |
|
921.0, |
|
881.0, |
|
881.0, |
|
841.0, |
|
841.0, |
|
801.0, |
|
801.0, |
|
761.0, |
|
761.0, |
|
721.0, |
|
721.0, |
|
681.0, |
|
681.0, |
|
641.0, |
|
641.0, |
|
601.0, |
|
601.0, |
|
561.0, |
|
561.0, |
|
521.0, |
|
521.0, |
|
481.0, |
|
481.0, |
|
441.0, |
|
441.0, |
|
401.0, |
|
401.0, |
|
361.0, |
|
361.0, |
|
321.0, |
|
321.0, |
|
281.0, |
|
281.0, |
|
241.0, |
|
241.0, |
|
201.0, |
|
201.0, |
|
161.0, |
|
161.0, |
|
121.0, |
|
121.0, |
|
81.0, |
|
81.0, |
|
41.0, |
|
41.0, |
|
1.0, |
|
1.0, |
|
], |
|
), |
|
]: |
|
assert_run_mixture(steps, split, scheduler_cls_timesteps[0], scheduler_cls_timesteps[1]) |
|
|
|
@slow |
|
def test_stable_diffusion_three_xl_mixture_of_denoiser(self): |
|
components = self.get_dummy_components() |
|
pipe_1 = StableDiffusionXLPipeline(**components).to(torch_device) |
|
pipe_1.unet.set_default_attn_processor() |
|
pipe_2 = StableDiffusionXLImg2ImgPipeline(**components).to(torch_device) |
|
pipe_2.unet.set_default_attn_processor() |
|
pipe_3 = StableDiffusionXLImg2ImgPipeline(**components).to(torch_device) |
|
pipe_3.unet.set_default_attn_processor() |
|
|
|
def assert_run_mixture( |
|
num_steps, |
|
split_1, |
|
split_2, |
|
scheduler_cls_orig, |
|
num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps, |
|
): |
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = num_steps |
|
|
|
class scheduler_cls(scheduler_cls_orig): |
|
pass |
|
|
|
pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config) |
|
pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config) |
|
pipe_3.scheduler = scheduler_cls.from_config(pipe_3.scheduler.config) |
|
|
|
|
|
pipe_1.scheduler.set_timesteps(num_steps) |
|
expected_steps = pipe_1.scheduler.timesteps.tolist() |
|
|
|
split_1_ts = num_train_timesteps - int(round(num_train_timesteps * split_1)) |
|
split_2_ts = num_train_timesteps - int(round(num_train_timesteps * split_2)) |
|
|
|
if pipe_1.scheduler.order == 2: |
|
expected_steps_1 = list(filter(lambda ts: ts >= split_1_ts, expected_steps)) |
|
expected_steps_2 = expected_steps_1[-1:] + list( |
|
filter(lambda ts: ts >= split_2_ts and ts < split_1_ts, expected_steps) |
|
) |
|
expected_steps_3 = expected_steps_2[-1:] + list(filter(lambda ts: ts < split_2_ts, expected_steps)) |
|
expected_steps = expected_steps_1 + expected_steps_2 + expected_steps_3 |
|
else: |
|
expected_steps_1 = list(filter(lambda ts: ts >= split_1_ts, expected_steps)) |
|
expected_steps_2 = list(filter(lambda ts: ts >= split_2_ts and ts < split_1_ts, expected_steps)) |
|
expected_steps_3 = list(filter(lambda ts: ts < split_2_ts, expected_steps)) |
|
|
|
|
|
|
|
done_steps = [] |
|
old_step = copy.copy(scheduler_cls.step) |
|
|
|
def new_step(self, *args, **kwargs): |
|
done_steps.append(args[1].cpu().item()) |
|
return old_step(self, *args, **kwargs) |
|
|
|
scheduler_cls.step = new_step |
|
|
|
inputs_1 = {**inputs, **{"denoising_end": split_1, "output_type": "latent"}} |
|
latents = pipe_1(**inputs_1).images[0] |
|
|
|
assert ( |
|
expected_steps_1 == done_steps |
|
), f"Failure with {scheduler_cls.__name__} and {num_steps} and {split_1} and {split_2}" |
|
|
|
with self.assertRaises(ValueError) as cm: |
|
inputs_2 = { |
|
**inputs, |
|
**{ |
|
"denoising_start": split_2, |
|
"denoising_end": split_1, |
|
"image": latents, |
|
"output_type": "latent", |
|
}, |
|
} |
|
pipe_2(**inputs_2).images[0] |
|
assert "cannot be larger than or equal to `denoising_end`" in str(cm.exception) |
|
|
|
inputs_2 = { |
|
**inputs, |
|
**{"denoising_start": split_1, "denoising_end": split_2, "image": latents, "output_type": "latent"}, |
|
} |
|
pipe_2(**inputs_2).images[0] |
|
|
|
assert expected_steps_2 == done_steps[len(expected_steps_1) :] |
|
|
|
inputs_3 = {**inputs, **{"denoising_start": split_2, "image": latents}} |
|
pipe_3(**inputs_3).images[0] |
|
|
|
assert expected_steps_3 == done_steps[len(expected_steps_1) + len(expected_steps_2) :] |
|
assert ( |
|
expected_steps == done_steps |
|
), f"Failure with {scheduler_cls.__name__} and {num_steps} and {split_1} and {split_2}" |
|
|
|
for steps in [7, 11, 20]: |
|
for split_1, split_2 in zip([0.19, 0.32], [0.81, 0.68]): |
|
for scheduler_cls in [ |
|
DDIMScheduler, |
|
EulerDiscreteScheduler, |
|
DPMSolverMultistepScheduler, |
|
UniPCMultistepScheduler, |
|
HeunDiscreteScheduler, |
|
]: |
|
assert_run_mixture(steps, split_1, split_2, scheduler_cls) |
|
|
|
def test_stable_diffusion_xl_multi_prompts(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components).to(torch_device) |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["prompt_2"] = inputs["prompt"] |
|
output = sd_pipe(**inputs) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["prompt_2"] = "different prompt" |
|
output = sd_pipe(**inputs) |
|
image_slice_3 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["negative_prompt"] = "negative prompt" |
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["negative_prompt"] = "negative prompt" |
|
inputs["negative_prompt_2"] = inputs["negative_prompt"] |
|
output = sd_pipe(**inputs) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["negative_prompt"] = "negative prompt" |
|
inputs["negative_prompt_2"] = "different negative prompt" |
|
output = sd_pipe(**inputs) |
|
image_slice_3 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 |
|
|
|
def test_stable_diffusion_xl_negative_conditions(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionXLPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice_with_no_neg_cond = image[0, -3:, -3:, -1] |
|
|
|
image = sd_pipe( |
|
**inputs, |
|
negative_original_size=(512, 512), |
|
negative_crops_coords_top_left=(0, 0), |
|
negative_target_size=(1024, 1024), |
|
).images |
|
image_slice_with_neg_cond = image[0, -3:, -3:, -1] |
|
|
|
self.assertTrue(np.abs(image_slice_with_no_neg_cond - image_slice_with_neg_cond).max() > 1e-2) |
|
|
|
def test_stable_diffusion_xl_save_from_pretrained(self): |
|
pipes = [] |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionXLPipeline(**components).to(torch_device) |
|
pipes.append(sd_pipe) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
sd_pipe.save_pretrained(tmpdirname) |
|
sd_pipe = StableDiffusionXLPipeline.from_pretrained(tmpdirname).to(torch_device) |
|
pipes.append(sd_pipe) |
|
|
|
image_slices = [] |
|
for pipe in pipes: |
|
pipe.unet.set_default_attn_processor() |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
|
|
image_slices.append(image[0, -3:, -3:, -1].flatten()) |
|
|
|
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 |
|
|
|
def test_pipeline_interrupt(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionXLPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "hey" |
|
num_inference_steps = 3 |
|
|
|
|
|
class PipelineState: |
|
def __init__(self): |
|
self.state = [] |
|
|
|
def apply(self, pipe, i, t, callback_kwargs): |
|
self.state.append(callback_kwargs["latents"]) |
|
return callback_kwargs |
|
|
|
pipe_state = PipelineState() |
|
sd_pipe( |
|
prompt, |
|
num_inference_steps=num_inference_steps, |
|
output_type="np", |
|
generator=torch.Generator("cpu").manual_seed(0), |
|
callback_on_step_end=pipe_state.apply, |
|
).images |
|
|
|
|
|
interrupt_step_idx = 1 |
|
|
|
def callback_on_step_end(pipe, i, t, callback_kwargs): |
|
if i == interrupt_step_idx: |
|
pipe._interrupt = True |
|
|
|
return callback_kwargs |
|
|
|
output_interrupted = sd_pipe( |
|
prompt, |
|
num_inference_steps=num_inference_steps, |
|
output_type="latent", |
|
generator=torch.Generator("cpu").manual_seed(0), |
|
callback_on_step_end=callback_on_step_end, |
|
).images |
|
|
|
|
|
|
|
intermediate_latent = pipe_state.state[interrupt_step_idx] |
|
|
|
|
|
|
|
assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4) |
|
|
|
|
|
@slow |
|
class StableDiffusionXLPipelineIntegrationTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_stable_diffusion_lcm(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel.from_pretrained( |
|
"latent-consistency/lcm-ssd-1b", torch_dtype=torch.float16, variant="fp16" |
|
) |
|
sd_pipe = StableDiffusionXLPipeline.from_pretrained( |
|
"segmind/SSD-1B", unet=unet, torch_dtype=torch.float16, variant="fp16" |
|
).to(torch_device) |
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "a red car standing on the side of the street" |
|
|
|
image = sd_pipe(prompt, num_inference_steps=4, guidance_scale=8.0).images[0] |
|
|
|
expected_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_full/stable_diffusion_ssd_1b_lcm.png" |
|
) |
|
|
|
image = sd_pipe.image_processor.pil_to_numpy(image) |
|
expected_image = sd_pipe.image_processor.pil_to_numpy(expected_image) |
|
|
|
max_diff = numpy_cosine_similarity_distance(image.flatten(), expected_image.flatten()) |
|
|
|
assert max_diff < 1e-2 |
|
|