diffusers-sdxl-controlnet
/
tests
/pipelines
/stable_diffusion_xl
/test_stable_diffusion_xl_img2img.py
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import random | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import ( | |
CLIPImageProcessor, | |
CLIPTextConfig, | |
CLIPTextModel, | |
CLIPTextModelWithProjection, | |
CLIPTokenizer, | |
CLIPVisionConfig, | |
CLIPVisionModelWithProjection, | |
) | |
from diffusers import ( | |
AutoencoderKL, | |
AutoencoderTiny, | |
EulerDiscreteScheduler, | |
LCMScheduler, | |
StableDiffusionXLImg2ImgPipeline, | |
UNet2DConditionModel, | |
) | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
floats_tensor, | |
require_torch_gpu, | |
torch_device, | |
) | |
from ..pipeline_params import ( | |
IMAGE_TO_IMAGE_IMAGE_PARAMS, | |
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, | |
TEXT_GUIDED_IMAGE_VARIATION_PARAMS, | |
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, | |
) | |
from ..test_pipelines_common import ( | |
IPAdapterTesterMixin, | |
PipelineLatentTesterMixin, | |
PipelineTesterMixin, | |
SDXLOptionalComponentsTesterMixin, | |
) | |
enable_full_determinism() | |
class StableDiffusionXLImg2ImgPipelineFastTests( | |
IPAdapterTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase | |
): | |
pipeline_class = StableDiffusionXLImg2ImgPipeline | |
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} | |
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} | |
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS | |
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS | |
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS | |
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union( | |
{"add_text_embeds", "add_time_ids", "add_neg_time_ids"} | |
) | |
def get_dummy_components(self, skip_first_text_encoder=False, time_cond_proj_dim=None): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
time_cond_proj_dim=time_cond_proj_dim, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
# SD2-specific config below | |
attention_head_dim=(2, 4), | |
use_linear_projection=True, | |
addition_embed_type="text_time", | |
addition_time_embed_dim=8, | |
transformer_layers_per_block=(1, 2), | |
projection_class_embeddings_input_dim=72, # 5 * 8 + 32 | |
cross_attention_dim=64 if not skip_first_text_encoder else 32, | |
) | |
scheduler = EulerDiscreteScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
steps_offset=1, | |
beta_schedule="scaled_linear", | |
timestep_spacing="leading", | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
sample_size=128, | |
) | |
torch.manual_seed(0) | |
image_encoder_config = CLIPVisionConfig( | |
hidden_size=32, | |
image_size=224, | |
projection_dim=32, | |
intermediate_size=37, | |
num_attention_heads=4, | |
num_channels=3, | |
num_hidden_layers=5, | |
patch_size=14, | |
) | |
image_encoder = CLIPVisionModelWithProjection(image_encoder_config) | |
feature_extractor = CLIPImageProcessor( | |
crop_size=224, | |
do_center_crop=True, | |
do_normalize=True, | |
do_resize=True, | |
image_mean=[0.48145466, 0.4578275, 0.40821073], | |
image_std=[0.26862954, 0.26130258, 0.27577711], | |
resample=3, | |
size=224, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
# SD2-specific config below | |
hidden_act="gelu", | |
projection_dim=32, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) | |
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder if not skip_first_text_encoder else None, | |
"tokenizer": tokenizer if not skip_first_text_encoder else None, | |
"text_encoder_2": text_encoder_2, | |
"tokenizer_2": tokenizer_2, | |
"requires_aesthetics_score": True, | |
"image_encoder": image_encoder, | |
"feature_extractor": feature_extractor, | |
} | |
return components | |
def get_dummy_tiny_autoencoder(self): | |
return AutoencoderTiny(in_channels=3, out_channels=3, latent_channels=4) | |
def test_components_function(self): | |
init_components = self.get_dummy_components() | |
init_components.pop("requires_aesthetics_score") | |
pipe = self.pipeline_class(**init_components) | |
self.assertTrue(hasattr(pipe, "components")) | |
self.assertTrue(set(pipe.components.keys()) == set(init_components.keys())) | |
def get_dummy_inputs(self, device, seed=0): | |
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
image = image / 2 + 0.5 | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"image": image, | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 5.0, | |
"output_type": "np", | |
"strength": 0.8, | |
} | |
return inputs | |
def test_stable_diffusion_xl_img2img_euler(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 32, 32, 3) | |
expected_slice = np.array([0.4664, 0.4886, 0.4403, 0.6902, 0.5592, 0.4534, 0.5931, 0.5951, 0.5224]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_stable_diffusion_xl_img2img_euler_lcm(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components(time_cond_proj_dim=256) | |
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) | |
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.config) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 32, 32, 3) | |
expected_slice = np.array([0.5604, 0.4352, 0.4717, 0.5844, 0.5101, 0.6704, 0.6290, 0.5460, 0.5286]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_stable_diffusion_xl_img2img_euler_lcm_custom_timesteps(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components(time_cond_proj_dim=256) | |
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) | |
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.config) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
del inputs["num_inference_steps"] | |
inputs["timesteps"] = [999, 499] | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 32, 32, 3) | |
expected_slice = np.array([0.5604, 0.4352, 0.4717, 0.5844, 0.5101, 0.6704, 0.6290, 0.5460, 0.5286]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_attention_slicing_forward_pass(self): | |
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) | |
def test_inference_batch_single_identical(self): | |
super().test_inference_batch_single_identical(expected_max_diff=3e-3) | |
# TODO(Patrick, Sayak) - skip for now as this requires more refiner tests | |
def test_save_load_optional_components(self): | |
pass | |
def test_stable_diffusion_xl_img2img_negative_prompt_embeds(self): | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
# forward without prompt embeds | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
negative_prompt = 3 * ["this is a negative prompt"] | |
inputs["negative_prompt"] = negative_prompt | |
inputs["prompt"] = 3 * [inputs["prompt"]] | |
output = sd_pipe(**inputs) | |
image_slice_1 = output.images[0, -3:, -3:, -1] | |
# forward with prompt embeds | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
negative_prompt = 3 * ["this is a negative prompt"] | |
prompt = 3 * [inputs.pop("prompt")] | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = sd_pipe.encode_prompt(prompt, negative_prompt=negative_prompt) | |
output = sd_pipe( | |
**inputs, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
) | |
image_slice_2 = output.images[0, -3:, -3:, -1] | |
# make sure that it's equal | |
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 | |
def test_ip_adapter_single(self): | |
expected_pipe_slice = None | |
if torch_device == "cpu": | |
expected_pipe_slice = np.array([0.5174, 0.4512, 0.5006, 0.6273, 0.5160, 0.6825, 0.6655, 0.5840, 0.5675]) | |
return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice) | |
def test_stable_diffusion_xl_img2img_tiny_autoencoder(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) | |
sd_pipe.vae = self.get_dummy_tiny_autoencoder() | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1].flatten() | |
assert image.shape == (1, 32, 32, 3) | |
expected_slice = np.array([0.0, 0.0, 0.0106, 0.0, 0.0, 0.0087, 0.0052, 0.0062, 0.0177]) | |
assert np.allclose(image_slice, expected_slice, atol=1e-4, rtol=1e-4) | |
def test_stable_diffusion_xl_offloads(self): | |
pipes = [] | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components).to(torch_device) | |
pipes.append(sd_pipe) | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) | |
sd_pipe.enable_model_cpu_offload() | |
pipes.append(sd_pipe) | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) | |
sd_pipe.enable_sequential_cpu_offload() | |
pipes.append(sd_pipe) | |
image_slices = [] | |
for pipe in pipes: | |
pipe.unet.set_default_attn_processor() | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
image = pipe(**inputs).images | |
image_slices.append(image[0, -3:, -3:, -1].flatten()) | |
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 | |
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 | |
def test_stable_diffusion_xl_multi_prompts(self): | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components).to(torch_device) | |
# forward with single prompt | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
inputs["num_inference_steps"] = 5 | |
output = sd_pipe(**inputs) | |
image_slice_1 = output.images[0, -3:, -3:, -1] | |
# forward with same prompt duplicated | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
inputs["num_inference_steps"] = 5 | |
inputs["prompt_2"] = inputs["prompt"] | |
output = sd_pipe(**inputs) | |
image_slice_2 = output.images[0, -3:, -3:, -1] | |
# ensure the results are equal | |
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 | |
# forward with different prompt | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
inputs["num_inference_steps"] = 5 | |
inputs["prompt_2"] = "different prompt" | |
output = sd_pipe(**inputs) | |
image_slice_3 = output.images[0, -3:, -3:, -1] | |
# ensure the results are not equal | |
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 | |
# manually set a negative_prompt | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
inputs["num_inference_steps"] = 5 | |
inputs["negative_prompt"] = "negative prompt" | |
output = sd_pipe(**inputs) | |
image_slice_1 = output.images[0, -3:, -3:, -1] | |
# forward with same negative_prompt duplicated | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
inputs["num_inference_steps"] = 5 | |
inputs["negative_prompt"] = "negative prompt" | |
inputs["negative_prompt_2"] = inputs["negative_prompt"] | |
output = sd_pipe(**inputs) | |
image_slice_2 = output.images[0, -3:, -3:, -1] | |
# ensure the results are equal | |
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 | |
# forward with different negative_prompt | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
inputs["num_inference_steps"] = 5 | |
inputs["negative_prompt"] = "negative prompt" | |
inputs["negative_prompt_2"] = "different negative prompt" | |
output = sd_pipe(**inputs) | |
image_slice_3 = output.images[0, -3:, -3:, -1] | |
# ensure the results are not equal | |
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 | |
def test_stable_diffusion_xl_img2img_negative_conditions(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice_with_no_neg_conditions = image[0, -3:, -3:, -1] | |
image = sd_pipe( | |
**inputs, | |
negative_original_size=(512, 512), | |
negative_crops_coords_top_left=( | |
0, | |
0, | |
), | |
negative_target_size=(1024, 1024), | |
).images | |
image_slice_with_neg_conditions = image[0, -3:, -3:, -1] | |
assert ( | |
np.abs(image_slice_with_no_neg_conditions.flatten() - image_slice_with_neg_conditions.flatten()).max() | |
> 1e-4 | |
) | |
def test_pipeline_interrupt(self): | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
prompt = "hey" | |
num_inference_steps = 5 | |
# store intermediate latents from the generation process | |
class PipelineState: | |
def __init__(self): | |
self.state = [] | |
def apply(self, pipe, i, t, callback_kwargs): | |
self.state.append(callback_kwargs["latents"]) | |
return callback_kwargs | |
pipe_state = PipelineState() | |
sd_pipe( | |
prompt, | |
image=inputs["image"], | |
strength=0.8, | |
num_inference_steps=num_inference_steps, | |
output_type="np", | |
generator=torch.Generator("cpu").manual_seed(0), | |
callback_on_step_end=pipe_state.apply, | |
).images | |
# interrupt generation at step index | |
interrupt_step_idx = 1 | |
def callback_on_step_end(pipe, i, t, callback_kwargs): | |
if i == interrupt_step_idx: | |
pipe._interrupt = True | |
return callback_kwargs | |
output_interrupted = sd_pipe( | |
prompt, | |
image=inputs["image"], | |
strength=0.8, | |
num_inference_steps=num_inference_steps, | |
output_type="latent", | |
generator=torch.Generator("cpu").manual_seed(0), | |
callback_on_step_end=callback_on_step_end, | |
).images | |
# fetch intermediate latents at the interrupted step | |
# from the completed generation process | |
intermediate_latent = pipe_state.state[interrupt_step_idx] | |
# compare the intermediate latent to the output of the interrupted process | |
# they should be the same | |
assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4) | |
class StableDiffusionXLImg2ImgRefinerOnlyPipelineFastTests( | |
PipelineLatentTesterMixin, PipelineTesterMixin, SDXLOptionalComponentsTesterMixin, unittest.TestCase | |
): | |
pipeline_class = StableDiffusionXLImg2ImgPipeline | |
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} | |
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} | |
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS | |
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS | |
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
# SD2-specific config below | |
attention_head_dim=(2, 4), | |
use_linear_projection=True, | |
addition_embed_type="text_time", | |
addition_time_embed_dim=8, | |
transformer_layers_per_block=(1, 2), | |
projection_class_embeddings_input_dim=72, # 5 * 8 + 32 | |
cross_attention_dim=32, | |
) | |
scheduler = EulerDiscreteScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
steps_offset=1, | |
beta_schedule="scaled_linear", | |
timestep_spacing="leading", | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
sample_size=128, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
# SD2-specific config below | |
hidden_act="gelu", | |
projection_dim=32, | |
) | |
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) | |
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"tokenizer": None, | |
"text_encoder": None, | |
"text_encoder_2": text_encoder_2, | |
"tokenizer_2": tokenizer_2, | |
"requires_aesthetics_score": True, | |
"image_encoder": None, | |
"feature_extractor": None, | |
} | |
return components | |
def test_components_function(self): | |
init_components = self.get_dummy_components() | |
init_components.pop("requires_aesthetics_score") | |
pipe = self.pipeline_class(**init_components) | |
self.assertTrue(hasattr(pipe, "components")) | |
self.assertTrue(set(pipe.components.keys()) == set(init_components.keys())) | |
def get_dummy_inputs(self, device, seed=0): | |
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
image = image / 2 + 0.5 | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"image": image, | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 5.0, | |
"output_type": "np", | |
"strength": 0.8, | |
} | |
return inputs | |
def test_stable_diffusion_xl_img2img_euler(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 32, 32, 3) | |
expected_slice = np.array([0.4745, 0.4924, 0.4338, 0.6468, 0.5547, 0.4419, 0.5646, 0.5897, 0.5146]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_stable_diffusion_xl_offloads(self): | |
pipes = [] | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components).to(torch_device) | |
pipes.append(sd_pipe) | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) | |
sd_pipe.enable_model_cpu_offload() | |
pipes.append(sd_pipe) | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) | |
sd_pipe.enable_sequential_cpu_offload() | |
pipes.append(sd_pipe) | |
image_slices = [] | |
for pipe in pipes: | |
pipe.unet.set_default_attn_processor() | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
image = pipe(**inputs).images | |
image_slices.append(image[0, -3:, -3:, -1].flatten()) | |
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 | |
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 | |
def test_stable_diffusion_xl_img2img_negative_conditions(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice_with_no_neg_conditions = image[0, -3:, -3:, -1] | |
image = sd_pipe( | |
**inputs, | |
negative_original_size=(512, 512), | |
negative_crops_coords_top_left=( | |
0, | |
0, | |
), | |
negative_target_size=(1024, 1024), | |
).images | |
image_slice_with_neg_conditions = image[0, -3:, -3:, -1] | |
assert ( | |
np.abs(image_slice_with_no_neg_conditions.flatten() - image_slice_with_neg_conditions.flatten()).max() | |
> 1e-4 | |
) | |
def test_stable_diffusion_xl_img2img_negative_prompt_embeds(self): | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
# forward without prompt embeds | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
negative_prompt = 3 * ["this is a negative prompt"] | |
inputs["negative_prompt"] = negative_prompt | |
inputs["prompt"] = 3 * [inputs["prompt"]] | |
output = sd_pipe(**inputs) | |
image_slice_1 = output.images[0, -3:, -3:, -1] | |
# forward with prompt embeds | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
negative_prompt = 3 * ["this is a negative prompt"] | |
prompt = 3 * [inputs.pop("prompt")] | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = sd_pipe.encode_prompt(prompt, negative_prompt=negative_prompt) | |
output = sd_pipe( | |
**inputs, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
) | |
image_slice_2 = output.images[0, -3:, -3:, -1] | |
# make sure that it's equal | |
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 | |
def test_stable_diffusion_xl_img2img_prompt_embeds_only(self): | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
# forward without prompt embeds | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
inputs["prompt"] = 3 * [inputs["prompt"]] | |
output = sd_pipe(**inputs) | |
image_slice_1 = output.images[0, -3:, -3:, -1] | |
# forward with prompt embeds | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
prompt = 3 * [inputs.pop("prompt")] | |
( | |
prompt_embeds, | |
_, | |
pooled_prompt_embeds, | |
_, | |
) = sd_pipe.encode_prompt(prompt) | |
output = sd_pipe( | |
**inputs, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
) | |
image_slice_2 = output.images[0, -3:, -3:, -1] | |
# make sure that it's equal | |
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 | |
def test_attention_slicing_forward_pass(self): | |
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) | |
def test_inference_batch_single_identical(self): | |
super().test_inference_batch_single_identical(expected_max_diff=3e-3) | |
def test_save_load_optional_components(self): | |
self._test_save_load_optional_components() | |