svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
10.9 kB
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImg2ImgPipeline, UNet2DConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
nightly,
require_torch_gpu,
skip_mps,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class StableUnCLIPImg2ImgPipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableUnCLIPImg2ImgPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
image_params = frozenset(
[]
) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
image_latents_params = frozenset([])
def get_dummy_components(self):
embedder_hidden_size = 32
embedder_projection_dim = embedder_hidden_size
# image encoding components
feature_extractor = CLIPImageProcessor(crop_size=32, size=32)
torch.manual_seed(0)
image_encoder = CLIPVisionModelWithProjection(
CLIPVisionConfig(
hidden_size=embedder_hidden_size,
projection_dim=embedder_projection_dim,
num_hidden_layers=5,
num_attention_heads=4,
image_size=32,
intermediate_size=37,
patch_size=1,
)
)
# regular denoising components
torch.manual_seed(0)
image_normalizer = StableUnCLIPImageNormalizer(embedding_dim=embedder_hidden_size)
image_noising_scheduler = DDPMScheduler(beta_schedule="squaredcos_cap_v2")
torch.manual_seed(0)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
torch.manual_seed(0)
text_encoder = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=embedder_hidden_size,
projection_dim=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
)
torch.manual_seed(0)
unet = UNet2DConditionModel(
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"),
block_out_channels=(32, 64),
attention_head_dim=(2, 4),
class_embed_type="projection",
# The class embeddings are the noise augmented image embeddings.
# I.e. the image embeddings concated with the noised embeddings of the same dimension
projection_class_embeddings_input_dim=embedder_projection_dim * 2,
cross_attention_dim=embedder_hidden_size,
layers_per_block=1,
upcast_attention=True,
use_linear_projection=True,
)
torch.manual_seed(0)
scheduler = DDIMScheduler(
beta_schedule="scaled_linear",
beta_start=0.00085,
beta_end=0.012,
prediction_type="v_prediction",
set_alpha_to_one=False,
steps_offset=1,
)
torch.manual_seed(0)
vae = AutoencoderKL()
components = {
# image encoding components
"feature_extractor": feature_extractor,
"image_encoder": image_encoder.eval(),
# image noising components
"image_normalizer": image_normalizer.eval(),
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder.eval(),
"unet": unet.eval(),
"scheduler": scheduler,
"vae": vae.eval(),
}
return components
def get_dummy_inputs(self, device, seed=0, pil_image=True):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
if pil_image:
input_image = input_image * 0.5 + 0.5
input_image = input_image.clamp(0, 1)
input_image = input_image.cpu().permute(0, 2, 3, 1).float().numpy()
input_image = DiffusionPipeline.numpy_to_pil(input_image)[0]
return {
"prompt": "An anime racoon running a marathon",
"image": input_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
}
@skip_mps
def test_image_embeds_none(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableUnCLIPImg2ImgPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs.update({"image_embeds": None})
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
# Overriding PipelineTesterMixin::test_attention_slicing_forward_pass
# because GPU undeterminism requires a looser check.
def test_attention_slicing_forward_pass(self):
test_max_difference = torch_device in ["cpu", "mps"]
self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference)
# Overriding PipelineTesterMixin::test_inference_batch_single_identical
# because undeterminism requires a looser check.
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=1e-3)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(test_max_difference=False)
@nightly
@require_torch_gpu
class StableUnCLIPImg2ImgPipelineIntegrationTests(unittest.TestCase):
def setUp(self):
# clean up the VRAM before each test
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_unclip_l_img2img(self):
input_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy"
)
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-l-img2img", torch_dtype=torch.float16
)
pipe.set_progress_bar_config(disable=None)
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
generator = torch.Generator(device="cpu").manual_seed(0)
output = pipe(input_image, "anime turle", generator=generator, output_type="np")
image = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(image, expected_image)
def test_stable_unclip_h_img2img(self):
input_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy"
)
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.float16
)
pipe.set_progress_bar_config(disable=None)
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
generator = torch.Generator(device="cpu").manual_seed(0)
output = pipe(input_image, "anime turle", generator=generator, output_type="np")
image = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(image, expected_image)
def test_stable_unclip_img2img_pipeline_with_sequential_cpu_offloading(self):
input_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png"
)
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
"fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.float16
)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_ = pipe(
input_image,
"anime turtle",
num_inference_steps=2,
output_type="np",
)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9