|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer |
|
|
|
from diffusers import PriorTransformer, UnCLIPPipeline, UnCLIPScheduler, UNet2DConditionModel, UNet2DModel |
|
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
load_numpy, |
|
nightly, |
|
require_torch_gpu, |
|
skip_mps, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS |
|
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class UnCLIPPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = UnCLIPPipeline |
|
params = TEXT_TO_IMAGE_PARAMS - { |
|
"negative_prompt", |
|
"height", |
|
"width", |
|
"negative_prompt_embeds", |
|
"guidance_scale", |
|
"prompt_embeds", |
|
"cross_attention_kwargs", |
|
} |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
required_optional_params = [ |
|
"generator", |
|
"return_dict", |
|
"prior_num_inference_steps", |
|
"decoder_num_inference_steps", |
|
"super_res_num_inference_steps", |
|
] |
|
test_xformers_attention = False |
|
|
|
@property |
|
def text_embedder_hidden_size(self): |
|
return 32 |
|
|
|
@property |
|
def time_input_dim(self): |
|
return 32 |
|
|
|
@property |
|
def block_out_channels_0(self): |
|
return self.time_input_dim |
|
|
|
@property |
|
def time_embed_dim(self): |
|
return self.time_input_dim * 4 |
|
|
|
@property |
|
def cross_attention_dim(self): |
|
return 100 |
|
|
|
@property |
|
def dummy_tokenizer(self): |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
return tokenizer |
|
|
|
@property |
|
def dummy_text_encoder(self): |
|
torch.manual_seed(0) |
|
config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=self.text_embedder_hidden_size, |
|
projection_dim=self.text_embedder_hidden_size, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
return CLIPTextModelWithProjection(config) |
|
|
|
@property |
|
def dummy_prior(self): |
|
torch.manual_seed(0) |
|
|
|
model_kwargs = { |
|
"num_attention_heads": 2, |
|
"attention_head_dim": 12, |
|
"embedding_dim": self.text_embedder_hidden_size, |
|
"num_layers": 1, |
|
} |
|
|
|
model = PriorTransformer(**model_kwargs) |
|
return model |
|
|
|
@property |
|
def dummy_text_proj(self): |
|
torch.manual_seed(0) |
|
|
|
model_kwargs = { |
|
"clip_embeddings_dim": self.text_embedder_hidden_size, |
|
"time_embed_dim": self.time_embed_dim, |
|
"cross_attention_dim": self.cross_attention_dim, |
|
} |
|
|
|
model = UnCLIPTextProjModel(**model_kwargs) |
|
return model |
|
|
|
@property |
|
def dummy_decoder(self): |
|
torch.manual_seed(0) |
|
|
|
model_kwargs = { |
|
"sample_size": 32, |
|
|
|
"in_channels": 3, |
|
|
|
"out_channels": 6, |
|
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), |
|
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), |
|
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn", |
|
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), |
|
"layers_per_block": 1, |
|
"cross_attention_dim": self.cross_attention_dim, |
|
"attention_head_dim": 4, |
|
"resnet_time_scale_shift": "scale_shift", |
|
"class_embed_type": "identity", |
|
} |
|
|
|
model = UNet2DConditionModel(**model_kwargs) |
|
return model |
|
|
|
@property |
|
def dummy_super_res_kwargs(self): |
|
return { |
|
"sample_size": 64, |
|
"layers_per_block": 1, |
|
"down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), |
|
"up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), |
|
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), |
|
"in_channels": 6, |
|
"out_channels": 3, |
|
} |
|
|
|
@property |
|
def dummy_super_res_first(self): |
|
torch.manual_seed(0) |
|
|
|
model = UNet2DModel(**self.dummy_super_res_kwargs) |
|
return model |
|
|
|
@property |
|
def dummy_super_res_last(self): |
|
|
|
torch.manual_seed(1) |
|
|
|
model = UNet2DModel(**self.dummy_super_res_kwargs) |
|
return model |
|
|
|
def get_dummy_components(self): |
|
prior = self.dummy_prior |
|
decoder = self.dummy_decoder |
|
text_proj = self.dummy_text_proj |
|
text_encoder = self.dummy_text_encoder |
|
tokenizer = self.dummy_tokenizer |
|
super_res_first = self.dummy_super_res_first |
|
super_res_last = self.dummy_super_res_last |
|
|
|
prior_scheduler = UnCLIPScheduler( |
|
variance_type="fixed_small_log", |
|
prediction_type="sample", |
|
num_train_timesteps=1000, |
|
clip_sample_range=5.0, |
|
) |
|
|
|
decoder_scheduler = UnCLIPScheduler( |
|
variance_type="learned_range", |
|
prediction_type="epsilon", |
|
num_train_timesteps=1000, |
|
) |
|
|
|
super_res_scheduler = UnCLIPScheduler( |
|
variance_type="fixed_small_log", |
|
prediction_type="epsilon", |
|
num_train_timesteps=1000, |
|
) |
|
|
|
components = { |
|
"prior": prior, |
|
"decoder": decoder, |
|
"text_proj": text_proj, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"super_res_first": super_res_first, |
|
"super_res_last": super_res_last, |
|
"prior_scheduler": prior_scheduler, |
|
"decoder_scheduler": decoder_scheduler, |
|
"super_res_scheduler": super_res_scheduler, |
|
} |
|
|
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "horse", |
|
"generator": generator, |
|
"prior_num_inference_steps": 2, |
|
"decoder_num_inference_steps": 2, |
|
"super_res_num_inference_steps": 2, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_unclip(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
|
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
output = pipe(**self.get_dummy_inputs(device)) |
|
image = output.images |
|
|
|
image_from_tuple = pipe( |
|
**self.get_dummy_inputs(device), |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
expected_slice = np.array( |
|
[ |
|
0.9997, |
|
0.9988, |
|
0.0028, |
|
0.9997, |
|
0.9984, |
|
0.9965, |
|
0.0029, |
|
0.9986, |
|
0.0025, |
|
] |
|
) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_unclip_passed_text_embed(self): |
|
device = torch.device("cpu") |
|
|
|
class DummyScheduler: |
|
init_noise_sigma = 1 |
|
|
|
components = self.get_dummy_components() |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
|
|
prior = components["prior"] |
|
decoder = components["decoder"] |
|
super_res_first = components["super_res_first"] |
|
tokenizer = components["tokenizer"] |
|
text_encoder = components["text_encoder"] |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
dtype = prior.dtype |
|
batch_size = 1 |
|
|
|
shape = (batch_size, prior.config.embedding_dim) |
|
prior_latents = pipe.prepare_latents( |
|
shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() |
|
) |
|
shape = (batch_size, decoder.config.in_channels, decoder.config.sample_size, decoder.config.sample_size) |
|
decoder_latents = pipe.prepare_latents( |
|
shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() |
|
) |
|
|
|
shape = ( |
|
batch_size, |
|
super_res_first.config.in_channels // 2, |
|
super_res_first.config.sample_size, |
|
super_res_first.config.sample_size, |
|
) |
|
super_res_latents = pipe.prepare_latents( |
|
shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() |
|
) |
|
|
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "this is a prompt example" |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = pipe( |
|
[prompt], |
|
generator=generator, |
|
prior_num_inference_steps=2, |
|
decoder_num_inference_steps=2, |
|
super_res_num_inference_steps=2, |
|
prior_latents=prior_latents, |
|
decoder_latents=decoder_latents, |
|
super_res_latents=super_res_latents, |
|
output_type="np", |
|
) |
|
image = output.images |
|
|
|
text_inputs = tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
return_tensors="pt", |
|
) |
|
text_model_output = text_encoder(text_inputs.input_ids) |
|
text_attention_mask = text_inputs.attention_mask |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image_from_text = pipe( |
|
generator=generator, |
|
prior_num_inference_steps=2, |
|
decoder_num_inference_steps=2, |
|
super_res_num_inference_steps=2, |
|
prior_latents=prior_latents, |
|
decoder_latents=decoder_latents, |
|
super_res_latents=super_res_latents, |
|
text_model_output=text_model_output, |
|
text_attention_mask=text_attention_mask, |
|
output_type="np", |
|
)[0] |
|
|
|
|
|
assert np.abs(image - image_from_text).max() < 1e-4 |
|
|
|
|
|
|
|
@skip_mps |
|
def test_attention_slicing_forward_pass(self): |
|
test_max_difference = torch_device == "cpu" |
|
|
|
self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference, expected_max_diff=0.01) |
|
|
|
|
|
|
|
@skip_mps |
|
def test_inference_batch_single_identical(self): |
|
additional_params_copy_to_batched_inputs = [ |
|
"prior_num_inference_steps", |
|
"decoder_num_inference_steps", |
|
"super_res_num_inference_steps", |
|
] |
|
|
|
self._test_inference_batch_single_identical( |
|
additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, expected_max_diff=5e-3 |
|
) |
|
|
|
def test_inference_batch_consistent(self): |
|
additional_params_copy_to_batched_inputs = [ |
|
"prior_num_inference_steps", |
|
"decoder_num_inference_steps", |
|
"super_res_num_inference_steps", |
|
] |
|
|
|
if torch_device == "mps": |
|
|
|
batch_sizes = [2, 3] |
|
self._test_inference_batch_consistent( |
|
batch_sizes=batch_sizes, |
|
additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, |
|
) |
|
else: |
|
self._test_inference_batch_consistent( |
|
additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs |
|
) |
|
|
|
@skip_mps |
|
def test_dict_tuple_outputs_equivalent(self): |
|
return super().test_dict_tuple_outputs_equivalent() |
|
|
|
@skip_mps |
|
def test_save_load_local(self): |
|
return super().test_save_load_local(expected_max_difference=5e-3) |
|
|
|
@skip_mps |
|
def test_save_load_optional_components(self): |
|
return super().test_save_load_optional_components() |
|
|
|
@unittest.skip("UnCLIP produces very large differences in fp16 vs fp32. Test is not useful.") |
|
def test_float16_inference(self): |
|
super().test_float16_inference(expected_max_diff=1.0) |
|
|
|
|
|
@nightly |
|
class UnCLIPPipelineCPUIntegrationTests(unittest.TestCase): |
|
def setUp(self): |
|
|
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_unclip_karlo_cpu_fp32(self): |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/unclip/karlo_v1_alpha_horse_cpu.npy" |
|
) |
|
|
|
pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha") |
|
pipeline.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.manual_seed(0) |
|
output = pipeline( |
|
"horse", |
|
num_images_per_prompt=1, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (256, 256, 3) |
|
assert np.abs(expected_image - image).max() < 1e-1 |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class UnCLIPPipelineIntegrationTests(unittest.TestCase): |
|
def setUp(self): |
|
|
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_unclip_karlo(self): |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/unclip/karlo_v1_alpha_horse_fp16.npy" |
|
) |
|
|
|
pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16) |
|
pipeline = pipeline.to(torch_device) |
|
pipeline.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
output = pipeline( |
|
"horse", |
|
generator=generator, |
|
output_type="np", |
|
) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (256, 256, 3) |
|
|
|
assert_mean_pixel_difference(image, expected_image) |
|
|
|
def test_unclip_pipeline_with_sequential_cpu_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
pipe = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
_ = pipe( |
|
"horse", |
|
num_images_per_prompt=1, |
|
prior_num_inference_steps=2, |
|
decoder_num_inference_steps=2, |
|
super_res_num_inference_steps=2, |
|
output_type="np", |
|
) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 7 * 10**9 |
|
|