|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPTextConfig, |
|
CLIPTextModelWithProjection, |
|
CLIPTokenizer, |
|
CLIPVisionConfig, |
|
CLIPVisionModelWithProjection, |
|
) |
|
|
|
from diffusers import ( |
|
DiffusionPipeline, |
|
UnCLIPImageVariationPipeline, |
|
UnCLIPScheduler, |
|
UNet2DConditionModel, |
|
UNet2DModel, |
|
) |
|
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
load_image, |
|
load_numpy, |
|
nightly, |
|
require_torch_gpu, |
|
skip_mps, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS |
|
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class UnCLIPImageVariationPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = UnCLIPImageVariationPipeline |
|
params = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"} |
|
batch_params = IMAGE_VARIATION_BATCH_PARAMS |
|
|
|
required_optional_params = [ |
|
"generator", |
|
"return_dict", |
|
"decoder_num_inference_steps", |
|
"super_res_num_inference_steps", |
|
] |
|
test_xformers_attention = False |
|
|
|
@property |
|
def text_embedder_hidden_size(self): |
|
return 32 |
|
|
|
@property |
|
def time_input_dim(self): |
|
return 32 |
|
|
|
@property |
|
def block_out_channels_0(self): |
|
return self.time_input_dim |
|
|
|
@property |
|
def time_embed_dim(self): |
|
return self.time_input_dim * 4 |
|
|
|
@property |
|
def cross_attention_dim(self): |
|
return 100 |
|
|
|
@property |
|
def dummy_tokenizer(self): |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
return tokenizer |
|
|
|
@property |
|
def dummy_text_encoder(self): |
|
torch.manual_seed(0) |
|
config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=self.text_embedder_hidden_size, |
|
projection_dim=self.text_embedder_hidden_size, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
return CLIPTextModelWithProjection(config) |
|
|
|
@property |
|
def dummy_image_encoder(self): |
|
torch.manual_seed(0) |
|
config = CLIPVisionConfig( |
|
hidden_size=self.text_embedder_hidden_size, |
|
projection_dim=self.text_embedder_hidden_size, |
|
num_hidden_layers=5, |
|
num_attention_heads=4, |
|
image_size=32, |
|
intermediate_size=37, |
|
patch_size=1, |
|
) |
|
return CLIPVisionModelWithProjection(config) |
|
|
|
@property |
|
def dummy_text_proj(self): |
|
torch.manual_seed(0) |
|
|
|
model_kwargs = { |
|
"clip_embeddings_dim": self.text_embedder_hidden_size, |
|
"time_embed_dim": self.time_embed_dim, |
|
"cross_attention_dim": self.cross_attention_dim, |
|
} |
|
|
|
model = UnCLIPTextProjModel(**model_kwargs) |
|
return model |
|
|
|
@property |
|
def dummy_decoder(self): |
|
torch.manual_seed(0) |
|
|
|
model_kwargs = { |
|
"sample_size": 32, |
|
|
|
"in_channels": 3, |
|
|
|
"out_channels": 6, |
|
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), |
|
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), |
|
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn", |
|
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), |
|
"layers_per_block": 1, |
|
"cross_attention_dim": self.cross_attention_dim, |
|
"attention_head_dim": 4, |
|
"resnet_time_scale_shift": "scale_shift", |
|
"class_embed_type": "identity", |
|
} |
|
|
|
model = UNet2DConditionModel(**model_kwargs) |
|
return model |
|
|
|
@property |
|
def dummy_super_res_kwargs(self): |
|
return { |
|
"sample_size": 64, |
|
"layers_per_block": 1, |
|
"down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), |
|
"up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), |
|
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), |
|
"in_channels": 6, |
|
"out_channels": 3, |
|
} |
|
|
|
@property |
|
def dummy_super_res_first(self): |
|
torch.manual_seed(0) |
|
|
|
model = UNet2DModel(**self.dummy_super_res_kwargs) |
|
return model |
|
|
|
@property |
|
def dummy_super_res_last(self): |
|
|
|
torch.manual_seed(1) |
|
|
|
model = UNet2DModel(**self.dummy_super_res_kwargs) |
|
return model |
|
|
|
def get_dummy_components(self): |
|
decoder = self.dummy_decoder |
|
text_proj = self.dummy_text_proj |
|
text_encoder = self.dummy_text_encoder |
|
tokenizer = self.dummy_tokenizer |
|
super_res_first = self.dummy_super_res_first |
|
super_res_last = self.dummy_super_res_last |
|
|
|
decoder_scheduler = UnCLIPScheduler( |
|
variance_type="learned_range", |
|
prediction_type="epsilon", |
|
num_train_timesteps=1000, |
|
) |
|
|
|
super_res_scheduler = UnCLIPScheduler( |
|
variance_type="fixed_small_log", |
|
prediction_type="epsilon", |
|
num_train_timesteps=1000, |
|
) |
|
|
|
feature_extractor = CLIPImageProcessor(crop_size=32, size=32) |
|
|
|
image_encoder = self.dummy_image_encoder |
|
|
|
return { |
|
"decoder": decoder, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"text_proj": text_proj, |
|
"feature_extractor": feature_extractor, |
|
"image_encoder": image_encoder, |
|
"super_res_first": super_res_first, |
|
"super_res_last": super_res_last, |
|
"decoder_scheduler": decoder_scheduler, |
|
"super_res_scheduler": super_res_scheduler, |
|
} |
|
|
|
def get_dummy_inputs(self, device, seed=0, pil_image=True): |
|
input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
if pil_image: |
|
input_image = input_image * 0.5 + 0.5 |
|
input_image = input_image.clamp(0, 1) |
|
input_image = input_image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
input_image = DiffusionPipeline.numpy_to_pil(input_image)[0] |
|
|
|
return { |
|
"image": input_image, |
|
"generator": generator, |
|
"decoder_num_inference_steps": 2, |
|
"super_res_num_inference_steps": 2, |
|
"output_type": "np", |
|
} |
|
|
|
def test_unclip_image_variation_input_tensor(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
|
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
pipeline_inputs = self.get_dummy_inputs(device, pil_image=False) |
|
|
|
output = pipe(**pipeline_inputs) |
|
image = output.images |
|
|
|
tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=False) |
|
|
|
image_from_tuple = pipe( |
|
**tuple_pipeline_inputs, |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
expected_slice = np.array( |
|
[ |
|
0.9997, |
|
0.0002, |
|
0.9997, |
|
0.9997, |
|
0.9969, |
|
0.0023, |
|
0.9997, |
|
0.9969, |
|
0.9970, |
|
] |
|
) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_unclip_image_variation_input_image(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
|
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
pipeline_inputs = self.get_dummy_inputs(device, pil_image=True) |
|
|
|
output = pipe(**pipeline_inputs) |
|
image = output.images |
|
|
|
tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=True) |
|
|
|
image_from_tuple = pipe( |
|
**tuple_pipeline_inputs, |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
expected_slice = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_unclip_image_variation_input_list_images(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
|
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
pipeline_inputs = self.get_dummy_inputs(device, pil_image=True) |
|
pipeline_inputs["image"] = [ |
|
pipeline_inputs["image"], |
|
pipeline_inputs["image"], |
|
] |
|
|
|
output = pipe(**pipeline_inputs) |
|
image = output.images |
|
|
|
tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=True) |
|
tuple_pipeline_inputs["image"] = [ |
|
tuple_pipeline_inputs["image"], |
|
tuple_pipeline_inputs["image"], |
|
] |
|
|
|
image_from_tuple = pipe( |
|
**tuple_pipeline_inputs, |
|
return_dict=False, |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (2, 64, 64, 3) |
|
|
|
expected_slice = np.array( |
|
[ |
|
0.9997, |
|
0.9989, |
|
0.0008, |
|
0.0021, |
|
0.9960, |
|
0.0018, |
|
0.0014, |
|
0.0002, |
|
0.9933, |
|
] |
|
) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_unclip_passed_image_embed(self): |
|
device = torch.device("cpu") |
|
|
|
class DummyScheduler: |
|
init_noise_sigma = 1 |
|
|
|
components = self.get_dummy_components() |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
|
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
dtype = pipe.decoder.dtype |
|
batch_size = 1 |
|
|
|
shape = ( |
|
batch_size, |
|
pipe.decoder.config.in_channels, |
|
pipe.decoder.config.sample_size, |
|
pipe.decoder.config.sample_size, |
|
) |
|
decoder_latents = pipe.prepare_latents( |
|
shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() |
|
) |
|
|
|
shape = ( |
|
batch_size, |
|
pipe.super_res_first.config.in_channels // 2, |
|
pipe.super_res_first.config.sample_size, |
|
pipe.super_res_first.config.sample_size, |
|
) |
|
super_res_latents = pipe.prepare_latents( |
|
shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() |
|
) |
|
|
|
pipeline_inputs = self.get_dummy_inputs(device, pil_image=False) |
|
|
|
img_out_1 = pipe( |
|
**pipeline_inputs, decoder_latents=decoder_latents, super_res_latents=super_res_latents |
|
).images |
|
|
|
pipeline_inputs = self.get_dummy_inputs(device, pil_image=False) |
|
|
|
image = pipeline_inputs.pop("image") |
|
image_embeddings = pipe.image_encoder(image).image_embeds |
|
|
|
img_out_2 = pipe( |
|
**pipeline_inputs, |
|
decoder_latents=decoder_latents, |
|
super_res_latents=super_res_latents, |
|
image_embeddings=image_embeddings, |
|
).images |
|
|
|
|
|
assert np.abs(img_out_1 - img_out_2).max() < 1e-4 |
|
|
|
|
|
|
|
@skip_mps |
|
def test_attention_slicing_forward_pass(self): |
|
test_max_difference = torch_device == "cpu" |
|
|
|
|
|
expected_max_diff = 1e-2 |
|
|
|
self._test_attention_slicing_forward_pass( |
|
test_max_difference=test_max_difference, expected_max_diff=expected_max_diff |
|
) |
|
|
|
|
|
|
|
@unittest.skip("UnCLIP produces very large differences. Test is not useful.") |
|
@skip_mps |
|
def test_inference_batch_single_identical(self): |
|
additional_params_copy_to_batched_inputs = [ |
|
"decoder_num_inference_steps", |
|
"super_res_num_inference_steps", |
|
] |
|
self._test_inference_batch_single_identical( |
|
additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, expected_max_diff=5e-3 |
|
) |
|
|
|
def test_inference_batch_consistent(self): |
|
additional_params_copy_to_batched_inputs = [ |
|
"decoder_num_inference_steps", |
|
"super_res_num_inference_steps", |
|
] |
|
|
|
if torch_device == "mps": |
|
|
|
batch_sizes = [2, 3] |
|
self._test_inference_batch_consistent( |
|
batch_sizes=batch_sizes, |
|
additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, |
|
) |
|
else: |
|
self._test_inference_batch_consistent( |
|
additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs |
|
) |
|
|
|
@skip_mps |
|
def test_dict_tuple_outputs_equivalent(self): |
|
return super().test_dict_tuple_outputs_equivalent() |
|
|
|
@unittest.skip("UnCLIP produces very large difference. Test is not useful.") |
|
@skip_mps |
|
def test_save_load_local(self): |
|
return super().test_save_load_local(expected_max_difference=4e-3) |
|
|
|
@skip_mps |
|
def test_save_load_optional_components(self): |
|
return super().test_save_load_optional_components() |
|
|
|
@unittest.skip("UnCLIP produces very large difference in fp16 vs fp32. Test is not useful.") |
|
def test_float16_inference(self): |
|
super().test_float16_inference(expected_max_diff=1.0) |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class UnCLIPImageVariationPipelineIntegrationTests(unittest.TestCase): |
|
def setUp(self): |
|
|
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_unclip_image_variation_karlo(self): |
|
input_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png" |
|
) |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/unclip/karlo_v1_alpha_cat_variation_fp16.npy" |
|
) |
|
|
|
pipeline = UnCLIPImageVariationPipeline.from_pretrained( |
|
"kakaobrain/karlo-v1-alpha-image-variations", torch_dtype=torch.float16 |
|
) |
|
pipeline = pipeline.to(torch_device) |
|
pipeline.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
output = pipeline( |
|
input_image, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (256, 256, 3) |
|
|
|
assert_mean_pixel_difference(image, expected_image, 15) |
|
|