|
import gc |
|
import unittest |
|
|
|
import torch |
|
|
|
from diffusers import ( |
|
StableDiffusionUpscalePipeline, |
|
) |
|
from diffusers.utils import load_image |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
numpy_cosine_similarity_distance, |
|
require_torch_gpu, |
|
slow, |
|
) |
|
|
|
from .single_file_testing_utils import SDSingleFileTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionUpscalePipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin): |
|
pipeline_class = StableDiffusionUpscalePipeline |
|
ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler/blob/main/x4-upscaler-ema.safetensors" |
|
original_config = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/x4-upscaling.yaml" |
|
repo_id = "stabilityai/stable-diffusion-x4-upscaler" |
|
|
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_single_file_format_inference_is_same_as_pretrained(self): |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/sd2-upscale/low_res_cat.png" |
|
) |
|
|
|
prompt = "a cat sitting on a park bench" |
|
pipe = StableDiffusionUpscalePipeline.from_pretrained(self.repo_id) |
|
pipe.enable_model_cpu_offload() |
|
|
|
generator = torch.Generator("cpu").manual_seed(0) |
|
output = pipe(prompt=prompt, image=image, generator=generator, output_type="np", num_inference_steps=3) |
|
image_from_pretrained = output.images[0] |
|
|
|
pipe_from_single_file = StableDiffusionUpscalePipeline.from_single_file(self.ckpt_path) |
|
pipe_from_single_file.enable_model_cpu_offload() |
|
|
|
generator = torch.Generator("cpu").manual_seed(0) |
|
output_from_single_file = pipe_from_single_file( |
|
prompt=prompt, image=image, generator=generator, output_type="np", num_inference_steps=3 |
|
) |
|
image_from_single_file = output_from_single_file.images[0] |
|
|
|
assert image_from_pretrained.shape == (512, 512, 3) |
|
assert image_from_single_file.shape == (512, 512, 3) |
|
assert ( |
|
numpy_cosine_similarity_distance(image_from_pretrained.flatten(), image_from_single_file.flatten()) < 1e-3 |
|
) |
|
|