|
import gc |
|
import tempfile |
|
import unittest |
|
|
|
import torch |
|
|
|
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline |
|
from diffusers.utils import load_image |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
numpy_cosine_similarity_distance, |
|
require_torch_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
from .single_file_testing_utils import ( |
|
SDXLSingleFileTesterMixin, |
|
download_diffusers_config, |
|
download_single_file_checkpoint, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionXLControlNetPipelineSingleFileSlowTests(unittest.TestCase, SDXLSingleFileTesterMixin): |
|
pipeline_class = StableDiffusionXLControlNetPipeline |
|
ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors" |
|
repo_id = "stabilityai/stable-diffusion-xl-base-1.0" |
|
original_config = ( |
|
"https://raw.githubusercontent.com/Stability-AI/generative-models/main/configs/inference/sd_xl_base.yaml" |
|
) |
|
|
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png" |
|
) |
|
inputs = { |
|
"prompt": "Stormtrooper's lecture", |
|
"image": image, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"strength": 0.75, |
|
"guidance_scale": 7.5, |
|
"output_type": "np", |
|
} |
|
|
|
return inputs |
|
|
|
def test_single_file_format_inference_is_same_as_pretrained(self): |
|
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-depth-sdxl-1.0", torch_dtype=torch.float16) |
|
pipe_single_file = self.pipeline_class.from_single_file( |
|
self.ckpt_path, controlnet=controlnet, torch_dtype=torch.float16 |
|
) |
|
pipe_single_file.unet.set_default_attn_processor() |
|
pipe_single_file.enable_model_cpu_offload() |
|
pipe_single_file.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
single_file_images = pipe_single_file(**inputs).images[0] |
|
|
|
pipe = self.pipeline_class.from_pretrained(self.repo_id, controlnet=controlnet, torch_dtype=torch.float16) |
|
pipe.unet.set_default_attn_processor() |
|
pipe.enable_model_cpu_offload() |
|
|
|
inputs = self.get_inputs(torch_device) |
|
images = pipe(**inputs).images[0] |
|
|
|
assert images.shape == (512, 512, 3) |
|
assert single_file_images.shape == (512, 512, 3) |
|
|
|
max_diff = numpy_cosine_similarity_distance(images[0].flatten(), single_file_images[0].flatten()) |
|
assert max_diff < 5e-2 |
|
|
|
def test_single_file_components(self): |
|
controlnet = ControlNetModel.from_pretrained( |
|
"diffusers/controlnet-depth-sdxl-1.0", torch_dtype=torch.float16, variant="fp16" |
|
) |
|
pipe = self.pipeline_class.from_pretrained( |
|
self.repo_id, |
|
variant="fp16", |
|
controlnet=controlnet, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
pipe_single_file = self.pipeline_class.from_single_file(self.ckpt_path, controlnet=controlnet) |
|
super().test_single_file_components(pipe, pipe_single_file) |
|
|
|
def test_single_file_components_local_files_only(self): |
|
controlnet = ControlNetModel.from_pretrained( |
|
"diffusers/controlnet-depth-sdxl-1.0", torch_dtype=torch.float16, variant="fp16" |
|
) |
|
pipe = self.pipeline_class.from_pretrained( |
|
self.repo_id, |
|
variant="fp16", |
|
controlnet=controlnet, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
ckpt_filename = self.ckpt_path.split("/")[-1] |
|
local_ckpt_path = download_single_file_checkpoint(self.repo_id, ckpt_filename, tmpdir) |
|
|
|
single_file_pipe = self.pipeline_class.from_single_file( |
|
local_ckpt_path, controlnet=controlnet, safety_checker=None, local_files_only=True |
|
) |
|
|
|
self._compare_component_configs(pipe, single_file_pipe) |
|
|
|
def test_single_file_components_with_original_config(self): |
|
controlnet = ControlNetModel.from_pretrained( |
|
"diffusers/controlnet-depth-sdxl-1.0", torch_dtype=torch.float16, variant="fp16" |
|
) |
|
pipe = self.pipeline_class.from_pretrained( |
|
self.repo_id, |
|
variant="fp16", |
|
controlnet=controlnet, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
pipe_single_file = self.pipeline_class.from_single_file( |
|
self.ckpt_path, |
|
original_config=self.original_config, |
|
controlnet=controlnet, |
|
) |
|
self._compare_component_configs(pipe, pipe_single_file) |
|
|
|
def test_single_file_components_with_original_config_local_files_only(self): |
|
controlnet = ControlNetModel.from_pretrained( |
|
"diffusers/controlnet-depth-sdxl-1.0", torch_dtype=torch.float16, variant="fp16" |
|
) |
|
pipe = self.pipeline_class.from_pretrained( |
|
self.repo_id, |
|
variant="fp16", |
|
controlnet=controlnet, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
ckpt_filename = self.ckpt_path.split("/")[-1] |
|
local_ckpt_path = download_single_file_checkpoint(self.repo_id, ckpt_filename, tmpdir) |
|
|
|
pipe_single_file = self.pipeline_class.from_single_file( |
|
local_ckpt_path, |
|
safety_checker=None, |
|
controlnet=controlnet, |
|
local_files_only=True, |
|
) |
|
self._compare_component_configs(pipe, pipe_single_file) |
|
|
|
def test_single_file_components_with_diffusers_config(self): |
|
controlnet = ControlNetModel.from_pretrained( |
|
"diffusers/controlnet-depth-sdxl-1.0", torch_dtype=torch.float16, variant="fp16" |
|
) |
|
pipe = self.pipeline_class.from_pretrained(self.repo_id, controlnet=controlnet) |
|
pipe_single_file = self.pipeline_class.from_single_file( |
|
self.ckpt_path, controlnet=controlnet, config=self.repo_id |
|
) |
|
|
|
super()._compare_component_configs(pipe, pipe_single_file) |
|
|
|
def test_single_file_components_with_diffusers_config_local_files_only(self): |
|
controlnet = ControlNetModel.from_pretrained( |
|
"diffusers/controlnet-depth-sdxl-1.0", torch_dtype=torch.float16, variant="fp16" |
|
) |
|
pipe = self.pipeline_class.from_pretrained( |
|
self.repo_id, |
|
controlnet=controlnet, |
|
) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
ckpt_filename = self.ckpt_path.split("/")[-1] |
|
local_ckpt_path = download_single_file_checkpoint(self.repo_id, ckpt_filename, tmpdir) |
|
local_diffusers_config = download_diffusers_config(self.repo_id, tmpdir) |
|
|
|
pipe_single_file = self.pipeline_class.from_single_file( |
|
local_ckpt_path, |
|
config=local_diffusers_config, |
|
safety_checker=None, |
|
controlnet=controlnet, |
|
local_files_only=True, |
|
) |
|
super()._compare_component_configs(pipe, pipe_single_file) |
|
|