๏ปฟ<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
[[open-in-colab]]
Diffusion ๋ชจ๋ธ์ ํ์ตํ๊ธฐ
Unconditional ์ด๋ฏธ์ง ์์ฑ์ ํ์ต์ ์ฌ์ฉ๋ ๋ฐ์ดํฐ์ ๊ณผ ์ ์ฌํ ์ด๋ฏธ์ง๋ฅผ ์์ฑํ๋ diffusion ๋ชจ๋ธ์์ ์ธ๊ธฐ ์๋ ์ดํ๋ฆฌ์ผ์ด์ ์ ๋๋ค. ์ผ๋ฐ์ ์ผ๋ก, ๊ฐ์ฅ ์ข์ ๊ฒฐ๊ณผ๋ ํน์ ๋ฐ์ดํฐ์ ์ ์ฌ์ ํ๋ จ๋ ๋ชจ๋ธ์ ํ์ธํ๋ํ๋ ๊ฒ์ผ๋ก ์ป์ ์ ์์ต๋๋ค. ์ด ํ๋ธ์์ ์ด๋ฌํ ๋ง์ ์ฒดํฌํฌ์ธํธ๋ฅผ ์ฐพ์ ์ ์์ง๋ง, ๋ง์ฝ ๋ง์์ ๋๋ ์ฒดํฌํฌ์ธํธ๋ฅผ ์ฐพ์ง ๋ชปํ๋ค๋ฉด, ์ธ์ ๋ ์ง ์ค์ค๋ก ํ์ตํ ์ ์์ต๋๋ค!
์ด ํํ ๋ฆฌ์ผ์ ๋๋ง์ ๐ฆ ๋๋น ๐ฆ๋ฅผ ์์ฑํ๊ธฐ ์ํด Smithsonian Butterflies ๋ฐ์ดํฐ์
์ ํ์ ์งํฉ์์ [UNet2DModel
] ๋ชจ๋ธ์ ํ์ตํ๋ ๋ฐฉ๋ฒ์ ๊ฐ๋ฅด์ณ์ค ๊ฒ์
๋๋ค.
๐ก ์ด ํ์ต ํํ ๋ฆฌ์ผ์ Training with ๐งจ Diffusers ๋ ธํธ๋ถ ๊ธฐ๋ฐ์ผ๋ก ํฉ๋๋ค. Diffusion ๋ชจ๋ธ์ ์๋ ๋ฐฉ์ ๋ฐ ์์ธํ ๋ด์ฉ์ ๋ ธํธ๋ถ์ ํ์ธํ์ธ์!
์์ ์ ์, ๐ค Datasets์ ๋ถ๋ฌ์ค๊ณ ์ ์ฒ๋ฆฌํ๊ธฐ ์ํด ๋ฐ์ดํฐ์ ์ด ์ค์น๋์ด ์๋์ง ๋ค์ GPU์์ ํ์ต์ ๊ฐ์ํํ๊ธฐ ์ํด ๐ค Accelerate ๊ฐ ์ค์น๋์ด ์๋์ง ํ์ธํ์ธ์. ๊ทธ ํ ํ์ต ๋ฉํธ๋ฆญ์ ์๊ฐํํ๊ธฐ ์ํด TensorBoard๋ฅผ ๋ํ ์ค์นํ์ธ์. (๋ํ ํ์ต ์ถ์ ์ ์ํด Weights & Biases๋ฅผ ์ฌ์ฉํ ์ ์์ต๋๋ค.)
!pip install diffusers[training]
์ปค๋ฎค๋ํฐ์ ๋ชจ๋ธ์ ๊ณต์ ํ ๊ฒ์ ๊ถ์ฅํ๋ฉฐ, ์ด๋ฅผ ์ํด์ Hugging Face ๊ณ์ ์ ๋ก๊ทธ์ธ์ ํด์ผ ํฉ๋๋ค. (๊ณ์ ์ด ์๋ค๋ฉด ์ฌ๊ธฐ์์ ๋ง๋ค ์ ์์ต๋๋ค.) ๋ ธํธ๋ถ์์ ๋ก๊ทธ์ธํ ์ ์์ผ๋ฉฐ ๋ฉ์์ง๊ฐ ํ์๋๋ฉด ํ ํฐ์ ์ ๋ ฅํ ์ ์์ต๋๋ค.
>>> from huggingface_hub import notebook_login
>>> notebook_login()
๋๋ ํฐ๋ฏธ๋๋ก ๋ก๊ทธ์ธํ ์ ์์ต๋๋ค:
huggingface-cli login
๋ชจ๋ธ ์ฒดํฌํฌ์ธํธ๊ฐ ์๋นํ ํฌ๊ธฐ ๋๋ฌธ์ Git-LFS์์ ๋์ฉ๋ ํ์ผ์ ๋ฒ์ ๊ด๋ฆฌ๋ฅผ ํ ์ ์์ต๋๋ค.
!sudo apt -qq install git-lfs
!git config --global credential.helper store
ํ์ต ๊ตฌ์ฑ
ํธ์๋ฅผ ์ํด ํ์ต ํ๋ผ๋ฏธํฐ๋ค์ ํฌํจํ TrainingConfig
ํด๋์ค๋ฅผ ์์ฑํฉ๋๋ค (์์ ๋กญ๊ฒ ์กฐ์ ๊ฐ๋ฅ):
>>> from dataclasses import dataclass
>>> @dataclass
... class TrainingConfig:
... image_size = 128 # ์์ฑ๋๋ ์ด๋ฏธ์ง ํด์๋
... train_batch_size = 16
... eval_batch_size = 16 # ํ๊ฐ ๋์์ ์ํ๋งํ ์ด๋ฏธ์ง ์
... num_epochs = 50
... gradient_accumulation_steps = 1
... learning_rate = 1e-4
... lr_warmup_steps = 500
... save_image_epochs = 10
... save_model_epochs = 30
... mixed_precision = "fp16" # `no`๋ float32, ์๋ ํผํฉ ์ ๋ฐ๋๋ฅผ ์ํ `fp16`
... output_dir = "ddpm-butterflies-128" # ๋ก์ปฌ ๋ฐ HF Hub์ ์ ์ฅ๋๋ ๋ชจ๋ธ๋ช
... push_to_hub = True # ์ ์ฅ๋ ๋ชจ๋ธ์ HF Hub์ ์
๋ก๋ํ ์ง ์ฌ๋ถ
... hub_private_repo = False
... overwrite_output_dir = True # ๋
ธํธ๋ถ์ ๋ค์ ์คํํ ๋ ์ด์ ๋ชจ๋ธ์ ๋ฎ์ด์์ธ์ง
... seed = 0
>>> config = TrainingConfig()
๋ฐ์ดํฐ์ ๋ถ๋ฌ์ค๊ธฐ
๐ค Datasets ๋ผ์ด๋ธ๋ฌ๋ฆฌ์ Smithsonian Butterflies ๋ฐ์ดํฐ์ ์ ์ฝ๊ฒ ๋ถ๋ฌ์ฌ ์ ์์ต๋๋ค.
>>> from datasets import load_dataset
>>> config.dataset_name = "huggan/smithsonian_butterflies_subset"
>>> dataset = load_dataset(config.dataset_name, split="train")
๐กHugGan Community Event ์์ ์ถ๊ฐ์ ๋ฐ์ดํฐ์
์ ์ฐพ๊ฑฐ๋ ๋ก์ปฌ์ ImageFolder
๋ฅผ ๋ง๋ฆ์ผ๋ก์จ ๋๋ง์ ๋ฐ์ดํฐ์
์ ์ฌ์ฉํ ์ ์์ต๋๋ค. HugGan Community Event ์ ๊ฐ์ ธ์จ ๋ฐ์ดํฐ์
์ ๊ฒฝ์ฐ ๋ฆฌํฌ์งํ ๋ฆฌ์ id๋ก config.dataset_name
์ ์ค์ ํ๊ณ , ๋๋ง์ ์ด๋ฏธ์ง๋ฅผ ์ฌ์ฉํ๋ ๊ฒฝ์ฐ imagefolder
๋ฅผ ์ค์ ํฉ๋๋ค.
๐ค Datasets์ [~datasets.Image
] ๊ธฐ๋ฅ์ ์ฌ์ฉํด ์๋์ผ๋ก ์ด๋ฏธ์ง ๋ฐ์ดํฐ๋ฅผ ๋์ฝ๋ฉํ๊ณ PIL.Image
๋ก ๋ถ๋ฌ์ต๋๋ค. ์ด๋ฅผ ์๊ฐํ ํด๋ณด๋ฉด:
>>> import matplotlib.pyplot as plt
>>> fig, axs = plt.subplots(1, 4, figsize=(16, 4))
>>> for i, image in enumerate(dataset[:4]["image"]):
... axs[i].imshow(image)
... axs[i].set_axis_off()
>>> fig.show()
์ด๋ฏธ์ง๋ ๋ชจ๋ ๋ค๋ฅธ ์ฌ์ด์ฆ์ด๊ธฐ ๋๋ฌธ์, ์ฐ์ ์ ์ฒ๋ฆฌ๊ฐ ํ์ํฉ๋๋ค:
Resize
๋config.image_size
์ ์ ์๋ ์ด๋ฏธ์ง ์ฌ์ด์ฆ๋ก ๋ณ๊ฒฝํฉ๋๋ค.RandomHorizontalFlip
์ ๋๋ค์ ์ผ๋ก ์ด๋ฏธ์ง๋ฅผ ๋ฏธ๋ฌ๋งํ์ฌ ๋ฐ์ดํฐ์ ์ ๋ณด๊ฐํฉ๋๋ค.Normalize
๋ ๋ชจ๋ธ์ด ์์ํ๋ [-1, 1] ๋ฒ์๋ก ํฝ์ ๊ฐ์ ์ฌ์กฐ์ ํ๋๋ฐ ์ค์ํฉ๋๋ค.
>>> from torchvision import transforms
>>> preprocess = transforms.Compose(
... [
... transforms.Resize((config.image_size, config.image_size)),
... transforms.RandomHorizontalFlip(),
... transforms.ToTensor(),
... transforms.Normalize([0.5], [0.5]),
... ]
... )
ํ์ต ๋์ค์ preprocess
ํจ์๋ฅผ ์ ์ฉํ๋ ค๋ฉด ๐ค Datasets์ [~datasets.Dataset.set_transform
] ๋ฐฉ๋ฒ์ด ์ฌ์ฉ๋ฉ๋๋ค.
>>> def transform(examples):
... images = [preprocess(image.convert("RGB")) for image in examples["image"]]
... return {"images": images}
>>> dataset.set_transform(transform)
์ด๋ฏธ์ง์ ํฌ๊ธฐ๊ฐ ์กฐ์ ๋์๋์ง ํ์ธํ๊ธฐ ์ํด ์ด๋ฏธ์ง๋ฅผ ๋ค์ ์๊ฐํํด๋ณด์ธ์. ์ด์ DataLoader์ ๋ฐ์ดํฐ์ ์ ํฌํจํด ํ์ตํ ์ค๋น๊ฐ ๋์์ต๋๋ค!
>>> import torch
>>> train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=config.train_batch_size, shuffle=True)
UNet2DModel ์์ฑํ๊ธฐ
๐งจ Diffusers์ ์ฌ์ ํ์ต๋ ๋ชจ๋ธ๋ค์ ๋ชจ๋ธ ํด๋์ค์์ ์ํ๋ ํ๋ผ๋ฏธํฐ๋ก ์ฝ๊ฒ ์์ฑํ ์ ์์ต๋๋ค. ์๋ฅผ ๋ค์ด, [UNet2DModel
]๋ฅผ ์์ฑํ๋ ค๋ฉด:
>>> from diffusers import UNet2DModel
>>> model = UNet2DModel(
... sample_size=config.image_size, # ํ๊ฒ ์ด๋ฏธ์ง ํด์๋
... in_channels=3, # ์
๋ ฅ ์ฑ๋ ์, RGB ์ด๋ฏธ์ง์์ 3
... out_channels=3, # ์ถ๋ ฅ ์ฑ๋ ์
... layers_per_block=2, # UNet ๋ธ๋ญ๋น ๋ช ๊ฐ์ ResNet ๋ ์ด์ด๊ฐ ์ฌ์ฉ๋๋์ง
... block_out_channels=(128, 128, 256, 256, 512, 512), # ๊ฐ UNet ๋ธ๋ญ์ ์ํ ์ถ๋ ฅ ์ฑ๋ ์
... down_block_types=(
... "DownBlock2D", # ์ผ๋ฐ์ ์ธ ResNet ๋ค์ด์ํ๋ง ๋ธ๋ญ
... "DownBlock2D",
... "DownBlock2D",
... "DownBlock2D",
... "AttnDownBlock2D", # spatial self-attention์ด ํฌํจ๋ ์ผ๋ฐ์ ์ธ ResNet ๋ค์ด์ํ๋ง ๋ธ๋ญ
... "DownBlock2D",
... ),
... up_block_types=(
... "UpBlock2D", # ์ผ๋ฐ์ ์ธ ResNet ์
์ํ๋ง ๋ธ๋ญ
... "AttnUpBlock2D", # spatial self-attention์ด ํฌํจ๋ ์ผ๋ฐ์ ์ธ ResNet ์
์ํ๋ง ๋ธ๋ญ
... "UpBlock2D",
... "UpBlock2D",
... "UpBlock2D",
... "UpBlock2D",
... ),
... )
์ํ์ ์ด๋ฏธ์ง ํฌ๊ธฐ์ ๋ชจ๋ธ ์ถ๋ ฅ ํฌ๊ธฐ๊ฐ ๋ง๋์ง ๋น ๋ฅด๊ฒ ํ์ธํ๊ธฐ ์ํ ์ข์ ์์ด๋์ด๊ฐ ์์ต๋๋ค:
>>> sample_image = dataset[0]["images"].unsqueeze(0)
>>> print("Input shape:", sample_image.shape)
Input shape: torch.Size([1, 3, 128, 128])
>>> print("Output shape:", model(sample_image, timestep=0).sample.shape)
Output shape: torch.Size([1, 3, 128, 128])
ํ๋ฅญํด์! ๋ค์, ์ด๋ฏธ์ง์ ์ฝ๊ฐ์ ๋ ธ์ด์ฆ๋ฅผ ๋ํ๊ธฐ ์ํด ์ค์ผ์ค๋ฌ๊ฐ ํ์ํฉ๋๋ค.
์ค์ผ์ค๋ฌ ์์ฑํ๊ธฐ
์ค์ผ์ค๋ฌ๋ ๋ชจ๋ธ์ ํ์ต ๋๋ ์ถ๋ก ์ ์ฌ์ฉํ๋์ง์ ๋ฐ๋ผ ๋ค๋ฅด๊ฒ ์๋ํฉ๋๋ค. ์ถ๋ก ์์, ์ค์ผ์ค๋ฌ๋ ๋ ธ์ด์ฆ๋ก๋ถํฐ ์ด๋ฏธ์ง๋ฅผ ์์ฑํฉ๋๋ค. ํ์ต์ ์ค์ผ์ค๋ฌ๋ diffusion ๊ณผ์ ์์์ ํน์ ํฌ์ธํธ๋ก๋ถํฐ ๋ชจ๋ธ์ ์ถ๋ ฅ ๋๋ ์ํ์ ๊ฐ์ ธ์ ๋ ธ์ด์ฆ ์ค์ผ์ค ๊ณผ ์ ๋ฐ์ดํธ ๊ท์น์ ๋ฐ๋ผ ์ด๋ฏธ์ง์ ๋ ธ์ด์ฆ๋ฅผ ์ ์ฉํฉ๋๋ค.
DDPMScheduler
๋ฅผ ๋ณด๋ฉด ์ด์ ์ผ๋ก๋ถํฐ sample_image
์ ๋๋คํ ๋
ธ์ด์ฆ๋ฅผ ๋ํ๋ add_noise
๋ฉ์๋๋ฅผ ์ฌ์ฉํฉ๋๋ค:
>>> import torch
>>> from PIL import Image
>>> from diffusers import DDPMScheduler
>>> noise_scheduler = DDPMScheduler(num_train_timesteps=1000)
>>> noise = torch.randn(sample_image.shape)
>>> timesteps = torch.LongTensor([50])
>>> noisy_image = noise_scheduler.add_noise(sample_image, noise, timesteps)
>>> Image.fromarray(((noisy_image.permute(0, 2, 3, 1) + 1.0) * 127.5).type(torch.uint8).numpy()[0])
๋ชจ๋ธ์ ํ์ต ๋ชฉ์ ์ ์ด๋ฏธ์ง์ ๋ํด์ง ๋ ธ์ด์ฆ๋ฅผ ์์ธกํ๋ ๊ฒ์ ๋๋ค. ์ด ๋จ๊ณ์์ ์์ค์ ๋ค์๊ณผ ๊ฐ์ด ๊ณ์ฐ๋ ์ ์์ต๋๋ค:
>>> import torch.nn.functional as F
>>> noise_pred = model(noisy_image, timesteps).sample
>>> loss = F.mse_loss(noise_pred, noise)
๋ชจ๋ธ ํ์ตํ๊ธฐ
์ง๊ธ๊น์ง, ๋ชจ๋ธ ํ์ต์ ์์ํ๊ธฐ ์ํด ๋ง์ ๋ถ๋ถ์ ๊ฐ์ถ์์ผ๋ฉฐ ์ด์ ๋จ์ ๊ฒ์ ๋ชจ๋ ๊ฒ์ ์กฐํฉํ๋ ๊ฒ์ ๋๋ค.
์ฐ์ ์ตํฐ๋ง์ด์ (optimizer)์ ํ์ต๋ฅ ์ค์ผ์ค๋ฌ(learning rate scheduler)๊ฐ ํ์ํ ๊ฒ์ ๋๋ค:
>>> from diffusers.optimization import get_cosine_schedule_with_warmup
>>> optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate)
>>> lr_scheduler = get_cosine_schedule_with_warmup(
... optimizer=optimizer,
... num_warmup_steps=config.lr_warmup_steps,
... num_training_steps=(len(train_dataloader) * config.num_epochs),
... )
๊ทธ ํ, ๋ชจ๋ธ์ ํ๊ฐํ๋ ๋ฐฉ๋ฒ์ด ํ์ํฉ๋๋ค. ํ๊ฐ๋ฅผ ์ํด, DDPMPipeline
์ ์ฌ์ฉํด ๋ฐฐ์น์ ์ด๋ฏธ์ง ์ํ๋ค์ ์์ฑํ๊ณ ๊ทธ๋ฆฌ๋ ํํ๋ก ์ ์ฅํ ์ ์์ต๋๋ค:
>>> from diffusers import DDPMPipeline
>>> import math
>>> import os
>>> def make_grid(images, rows, cols):
... w, h = images[0].size
... grid = Image.new("RGB", size=(cols * w, rows * h))
... for i, image in enumerate(images):
... grid.paste(image, box=(i % cols * w, i // cols * h))
... return grid
>>> def evaluate(config, epoch, pipeline):
... # ๋๋คํ ๋
ธ์ด์ฆ๋ก ๋ถํฐ ์ด๋ฏธ์ง๋ฅผ ์ถ์ถํฉ๋๋ค.(์ด๋ ์ญ์ ํ diffusion ๊ณผ์ ์
๋๋ค.)
... # ๊ธฐ๋ณธ ํ์ดํ๋ผ์ธ ์ถ๋ ฅ ํํ๋ `List[PIL.Image]` ์
๋๋ค.
... images = pipeline(
... batch_size=config.eval_batch_size,
... generator=torch.manual_seed(config.seed),
... ).images
... # ์ด๋ฏธ์ง๋ค์ ๊ทธ๋ฆฌ๋๋ก ๋ง๋ค์ด์ค๋๋ค.
... image_grid = make_grid(images, rows=4, cols=4)
... # ์ด๋ฏธ์ง๋ค์ ์ ์ฅํฉ๋๋ค.
... test_dir = os.path.join(config.output_dir, "samples")
... os.makedirs(test_dir, exist_ok=True)
... image_grid.save(f"{test_dir}/{epoch:04d}.png")
TensorBoard์ ๋ก๊น , ๊ทธ๋๋์ธํธ ๋์ ๋ฐ ํผํฉ ์ ๋ฐ๋ ํ์ต์ ์ฝ๊ฒ ์ํํ๊ธฐ ์ํด ๐ค Accelerate๋ฅผ ํ์ต ๋ฃจํ์ ํจ๊ป ์์ ๋งํ ๋ชจ๋ ๊ตฌ์ฑ ์ ๋ณด๋ค์ ๋ฌถ์ด ์งํํ ์ ์์ต๋๋ค. ํ๋ธ์ ๋ชจ๋ธ์ ์ ๋ก๋ ํ๊ธฐ ์ํด ๋ฆฌํฌ์งํ ๋ฆฌ ์ด๋ฆ ๋ฐ ์ ๋ณด๋ฅผ ๊ฐ์ ธ์ค๊ธฐ ์ํ ํจ์๋ฅผ ์์ฑํ๊ณ ํ๋ธ์ ์ ๋ก๋ํ ์ ์์ต๋๋ค.
๐ก์๋์ ํ์ต ๋ฃจํ๋ ์ด๋ ต๊ณ ๊ธธ์ด ๋ณด์ผ ์ ์์ง๋ง, ๋์ค์ ํ ์ค์ ์ฝ๋๋ก ํ์ต์ ํ๋ค๋ฉด ๊ทธ๋งํ ๊ฐ์น๊ฐ ์์ ๊ฒ์ ๋๋ค! ๋ง์ฝ ๊ธฐ๋ค๋ฆฌ์ง ๋ชปํ๊ณ ์ด๋ฏธ์ง๋ฅผ ์์ฑํ๊ณ ์ถ๋ค๋ฉด, ์๋ ์ฝ๋๋ฅผ ์์ ๋กญ๊ฒ ๋ถ์ฌ๋ฃ๊ณ ์๋์ํค๋ฉด ๋ฉ๋๋ค. ๐ค
>>> from accelerate import Accelerator
>>> from huggingface_hub import create_repo, upload_folder
>>> from tqdm.auto import tqdm
>>> from pathlib import Path
>>> import os
>>> def train_loop(config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler):
... # Initialize accelerator and tensorboard logging
... accelerator = Accelerator(
... mixed_precision=config.mixed_precision,
... gradient_accumulation_steps=config.gradient_accumulation_steps,
... log_with="tensorboard",
... project_dir=os.path.join(config.output_dir, "logs"),
... )
... if accelerator.is_main_process:
... if config.output_dir is not None:
... os.makedirs(config.output_dir, exist_ok=True)
... if config.push_to_hub:
... repo_id = create_repo(
... repo_id=config.hub_model_id or Path(config.output_dir).name, exist_ok=True
... ).repo_id
... accelerator.init_trackers("train_example")
... # ๋ชจ๋ ๊ฒ์ด ์ค๋น๋์์ต๋๋ค.
... # ๊ธฐ์ตํด์ผ ํ ํน์ ํ ์์๋ ์์ผ๋ฉฐ ์ค๋นํ ๋ฐฉ๋ฒ์ ์ ๊ณตํ ๊ฒ๊ณผ ๋์ผํ ์์๋ก ๊ฐ์ฒด์ ์์ถ์ ํ๋ฉด ๋ฉ๋๋ค.
... model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
... model, optimizer, train_dataloader, lr_scheduler
... )
... global_step = 0
... # ์ด์ ๋ชจ๋ธ์ ํ์ตํฉ๋๋ค.
... for epoch in range(config.num_epochs):
... progress_bar = tqdm(total=len(train_dataloader), disable=not accelerator.is_local_main_process)
... progress_bar.set_description(f"Epoch {epoch}")
... for step, batch in enumerate(train_dataloader):
... clean_images = batch["images"]
... # ์ด๋ฏธ์ง์ ๋ํ ๋
ธ์ด์ฆ๋ฅผ ์ํ๋งํฉ๋๋ค.
... noise = torch.randn(clean_images.shape, device=clean_images.device)
... bs = clean_images.shape[0]
... # ๊ฐ ์ด๋ฏธ์ง๋ฅผ ์ํ ๋๋คํ ํ์์คํ
(timestep)์ ์ํ๋งํฉ๋๋ค.
... timesteps = torch.randint(
... 0, noise_scheduler.config.num_train_timesteps, (bs,), device=clean_images.device,
... dtype=torch.int64
... )
... # ๊ฐ ํ์์คํ
์ ๋
ธ์ด์ฆ ํฌ๊ธฐ์ ๋ฐ๋ผ ๊นจ๋ํ ์ด๋ฏธ์ง์ ๋
ธ์ด์ฆ๋ฅผ ์ถ๊ฐํฉ๋๋ค.
... # (์ด๋ foward diffusion ๊ณผ์ ์
๋๋ค.)
... noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)
... with accelerator.accumulate(model):
... # ๋
ธ์ด์ฆ๋ฅผ ๋ฐ๋ณต์ ์ผ๋ก ์์ธกํฉ๋๋ค.
... noise_pred = model(noisy_images, timesteps, return_dict=False)[0]
... loss = F.mse_loss(noise_pred, noise)
... accelerator.backward(loss)
... accelerator.clip_grad_norm_(model.parameters(), 1.0)
... optimizer.step()
... lr_scheduler.step()
... optimizer.zero_grad()
... progress_bar.update(1)
... logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
... progress_bar.set_postfix(**logs)
... accelerator.log(logs, step=global_step)
... global_step += 1
... # ๊ฐ ์ํฌํฌ๊ฐ ๋๋ ํ evaluate()์ ๋ช ๊ฐ์ง ๋ฐ๋ชจ ์ด๋ฏธ์ง๋ฅผ ์ ํ์ ์ผ๋ก ์ํ๋งํ๊ณ ๋ชจ๋ธ์ ์ ์ฅํฉ๋๋ค.
... if accelerator.is_main_process:
... pipeline = DDPMPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_scheduler)
... if (epoch + 1) % config.save_image_epochs == 0 or epoch == config.num_epochs - 1:
... evaluate(config, epoch, pipeline)
... if (epoch + 1) % config.save_model_epochs == 0 or epoch == config.num_epochs - 1:
... if config.push_to_hub:
... upload_folder(
... repo_id=repo_id,
... folder_path=config.output_dir,
... commit_message=f"Epoch {epoch}",
... ignore_patterns=["step_*", "epoch_*"],
... )
... else:
... pipeline.save_pretrained(config.output_dir)
ํด, ์ฝ๋๊ฐ ๊ฝค ๋ง์๋ค์! ํ์ง๋ง ๐ค Accelerate์ [~accelerate.notebook_launcher
] ํจ์์ ํ์ต์ ์์ํ ์ค๋น๊ฐ ๋์์ต๋๋ค. ํจ์์ ํ์ต ๋ฃจํ, ๋ชจ๋ ํ์ต ์ธ์, ํ์ต์ ์ฌ์ฉํ ํ๋ก์ธ์ค ์(์ฌ์ฉ ๊ฐ๋ฅํ GPU์ ์๋ฅผ ๋ณ๊ฒฝํ ์ ์์)๋ฅผ ์ ๋ฌํฉ๋๋ค:
>>> from accelerate import notebook_launcher
>>> args = (config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler)
>>> notebook_launcher(train_loop, args, num_processes=1)
ํ๋ฒ ํ์ต์ด ์๋ฃ๋๋ฉด, diffusion ๋ชจ๋ธ๋ก ์์ฑ๋ ์ต์ข ๐ฆ์ด๋ฏธ์ง๐ฆ๋ฅผ ํ์ธํด๋ณด๊ธธ ๋ฐ๋๋๋ค!
>>> import glob
>>> sample_images = sorted(glob.glob(f"{config.output_dir}/samples/*.png"))
>>> Image.open(sample_images[-1])
๋ค์ ๋จ๊ณ
Unconditional ์ด๋ฏธ์ง ์์ฑ์ ํ์ต๋ ์ ์๋ ์์ ์ค ํ๋์ ์์์ ๋๋ค. ๋ค๋ฅธ ์์ ๊ณผ ํ์ต ๋ฐฉ๋ฒ์ ๐งจ Diffusers ํ์ต ์์ ํ์ด์ง์์ ํ์ธํ ์ ์์ต๋๋ค. ๋ค์์ ํ์ตํ ์ ์๋ ๋ช ๊ฐ์ง ์์์ ๋๋ค:
- Textual Inversion, ํน์ ์๊ฐ์ ๊ฐ๋ ์ ํ์ต์์ผ ์์ฑ๋ ์ด๋ฏธ์ง์ ํตํฉ์ํค๋ ์๊ณ ๋ฆฌ์ฆ์ ๋๋ค.
- DreamBooth, ์ฃผ์ ์ ๋ํ ๋ช ๊ฐ์ง ์ ๋ ฅ ์ด๋ฏธ์ง๋ค์ด ์ฃผ์ด์ง๋ฉด ์ฃผ์ ์ ๋ํ ๊ฐ์ธํ๋ ์ด๋ฏธ์ง๋ฅผ ์์ฑํ๊ธฐ ์ํ ๊ธฐ์ ์ ๋๋ค.
- Guide ๋ฐ์ดํฐ์ ์ Stable Diffusion ๋ชจ๋ธ์ ํ์ธํ๋ํ๋ ๋ฐฉ๋ฒ์ ๋๋ค.
- Guide LoRA๋ฅผ ์ฌ์ฉํด ๋งค์ฐ ํฐ ๋ชจ๋ธ์ ๋น ๋ฅด๊ฒ ํ์ธํ๋ํ๊ธฐ ์ํ ๋ฉ๋ชจ๋ฆฌ ํจ์จ์ ์ธ ๊ธฐ์ ์ ๋๋ค.