|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import functools |
|
import gc |
|
import itertools |
|
import json |
|
import logging |
|
import math |
|
import os |
|
import random |
|
import shutil |
|
from pathlib import Path |
|
from typing import List, Optional, Union |
|
|
|
import accelerate |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torch.utils.checkpoint |
|
import transformers |
|
import webdataset as wds |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import ProjectConfiguration, set_seed |
|
from braceexpand import braceexpand |
|
from huggingface_hub import create_repo, upload_folder |
|
from packaging import version |
|
from PIL import Image |
|
from torch.utils.data import default_collate |
|
from torchvision import transforms |
|
from tqdm.auto import tqdm |
|
from transformers import AutoTokenizer, DPTFeatureExtractor, DPTForDepthEstimation, PretrainedConfig |
|
from webdataset.tariterators import ( |
|
base_plus_ext, |
|
tar_file_expander, |
|
url_opener, |
|
valid_sample, |
|
) |
|
|
|
import diffusers |
|
from diffusers import ( |
|
AutoencoderKL, |
|
ControlNetModel, |
|
EulerDiscreteScheduler, |
|
StableDiffusionXLControlNetPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.utils import check_min_version, is_wandb_available |
|
from diffusers.utils.import_utils import is_xformers_available |
|
|
|
|
|
MAX_SEQ_LENGTH = 77 |
|
|
|
if is_wandb_available(): |
|
import wandb |
|
|
|
|
|
check_min_version("0.18.0.dev0") |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def filter_keys(key_set): |
|
def _f(dictionary): |
|
return {k: v for k, v in dictionary.items() if k in key_set} |
|
|
|
return _f |
|
|
|
|
|
def group_by_keys_nothrow(data, keys=base_plus_ext, lcase=True, suffixes=None, handler=None): |
|
"""Return function over iterator that groups key, value pairs into samples. |
|
|
|
:param keys: function that splits the key into key and extension (base_plus_ext) |
|
:param lcase: convert suffixes to lower case (Default value = True) |
|
""" |
|
current_sample = None |
|
for filesample in data: |
|
assert isinstance(filesample, dict) |
|
fname, value = filesample["fname"], filesample["data"] |
|
prefix, suffix = keys(fname) |
|
if prefix is None: |
|
continue |
|
if lcase: |
|
suffix = suffix.lower() |
|
|
|
|
|
|
|
if current_sample is None or prefix != current_sample["__key__"] or suffix in current_sample: |
|
if valid_sample(current_sample): |
|
yield current_sample |
|
current_sample = {"__key__": prefix, "__url__": filesample["__url__"]} |
|
if suffixes is None or suffix in suffixes: |
|
current_sample[suffix] = value |
|
if valid_sample(current_sample): |
|
yield current_sample |
|
|
|
|
|
def tarfile_to_samples_nothrow(src, handler=wds.warn_and_continue): |
|
|
|
streams = url_opener(src, handler=handler) |
|
files = tar_file_expander(streams, handler=handler) |
|
samples = group_by_keys_nothrow(files, handler=handler) |
|
return samples |
|
|
|
|
|
def control_transform(image): |
|
image = np.array(image) |
|
|
|
low_threshold = 100 |
|
high_threshold = 200 |
|
|
|
image = cv2.Canny(image, low_threshold, high_threshold) |
|
image = image[:, :, None] |
|
image = np.concatenate([image, image, image], axis=2) |
|
control_image = Image.fromarray(image) |
|
return control_image |
|
|
|
|
|
def canny_image_transform(example, resolution=1024): |
|
image = example["image"] |
|
image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BILINEAR)(image) |
|
|
|
c_top, c_left, _, _ = transforms.RandomCrop.get_params(image, output_size=(resolution, resolution)) |
|
image = transforms.functional.crop(image, c_top, c_left, resolution, resolution) |
|
control_image = control_transform(image) |
|
|
|
image = transforms.ToTensor()(image) |
|
image = transforms.Normalize([0.5], [0.5])(image) |
|
control_image = transforms.ToTensor()(control_image) |
|
|
|
example["image"] = image |
|
example["control_image"] = control_image |
|
example["crop_coords"] = (c_top, c_left) |
|
|
|
return example |
|
|
|
|
|
def depth_image_transform(example, feature_extractor, resolution=1024): |
|
image = example["image"] |
|
image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BILINEAR)(image) |
|
|
|
c_top, c_left, _, _ = transforms.RandomCrop.get_params(image, output_size=(resolution, resolution)) |
|
image = transforms.functional.crop(image, c_top, c_left, resolution, resolution) |
|
|
|
control_image = feature_extractor(images=image, return_tensors="pt").pixel_values.squeeze(0) |
|
|
|
image = transforms.ToTensor()(image) |
|
image = transforms.Normalize([0.5], [0.5])(image) |
|
|
|
example["image"] = image |
|
example["control_image"] = control_image |
|
example["crop_coords"] = (c_top, c_left) |
|
|
|
return example |
|
|
|
|
|
class WebdatasetFilter: |
|
def __init__(self, min_size=1024, max_pwatermark=0.5): |
|
self.min_size = min_size |
|
self.max_pwatermark = max_pwatermark |
|
|
|
def __call__(self, x): |
|
try: |
|
if "json" in x: |
|
x_json = json.loads(x["json"]) |
|
filter_size = (x_json.get("original_width", 0.0) or 0.0) >= self.min_size and x_json.get( |
|
"original_height", 0 |
|
) >= self.min_size |
|
filter_watermark = (x_json.get("pwatermark", 1.0) or 1.0) <= self.max_pwatermark |
|
return filter_size and filter_watermark |
|
else: |
|
return False |
|
except Exception: |
|
return False |
|
|
|
|
|
class Text2ImageDataset: |
|
def __init__( |
|
self, |
|
train_shards_path_or_url: Union[str, List[str]], |
|
eval_shards_path_or_url: Union[str, List[str]], |
|
num_train_examples: int, |
|
per_gpu_batch_size: int, |
|
global_batch_size: int, |
|
num_workers: int, |
|
resolution: int = 256, |
|
center_crop: bool = True, |
|
random_flip: bool = False, |
|
shuffle_buffer_size: int = 1000, |
|
pin_memory: bool = False, |
|
persistent_workers: bool = False, |
|
control_type: str = "canny", |
|
feature_extractor: Optional[DPTFeatureExtractor] = None, |
|
): |
|
if not isinstance(train_shards_path_or_url, str): |
|
train_shards_path_or_url = [list(braceexpand(urls)) for urls in train_shards_path_or_url] |
|
|
|
train_shards_path_or_url = list(itertools.chain.from_iterable(train_shards_path_or_url)) |
|
|
|
if not isinstance(eval_shards_path_or_url, str): |
|
eval_shards_path_or_url = [list(braceexpand(urls)) for urls in eval_shards_path_or_url] |
|
|
|
eval_shards_path_or_url = list(itertools.chain.from_iterable(eval_shards_path_or_url)) |
|
|
|
def get_orig_size(json): |
|
return (int(json.get("original_width", 0.0)), int(json.get("original_height", 0.0))) |
|
|
|
if control_type == "canny": |
|
image_transform = functools.partial(canny_image_transform, resolution=resolution) |
|
elif control_type == "depth": |
|
image_transform = functools.partial( |
|
depth_image_transform, feature_extractor=feature_extractor, resolution=resolution |
|
) |
|
|
|
processing_pipeline = [ |
|
wds.decode("pil", handler=wds.ignore_and_continue), |
|
wds.rename( |
|
image="jpg;png;jpeg;webp", |
|
control_image="jpg;png;jpeg;webp", |
|
text="text;txt;caption", |
|
orig_size="json", |
|
handler=wds.warn_and_continue, |
|
), |
|
wds.map(filter_keys({"image", "control_image", "text", "orig_size"})), |
|
wds.map_dict(orig_size=get_orig_size), |
|
wds.map(image_transform), |
|
wds.to_tuple("image", "control_image", "text", "orig_size", "crop_coords"), |
|
] |
|
|
|
|
|
pipeline = [ |
|
wds.ResampledShards(train_shards_path_or_url), |
|
tarfile_to_samples_nothrow, |
|
wds.select(WebdatasetFilter(min_size=512)), |
|
wds.shuffle(shuffle_buffer_size), |
|
*processing_pipeline, |
|
wds.batched(per_gpu_batch_size, partial=False, collation_fn=default_collate), |
|
] |
|
|
|
num_worker_batches = math.ceil(num_train_examples / (global_batch_size * num_workers)) |
|
num_batches = num_worker_batches * num_workers |
|
num_samples = num_batches * global_batch_size |
|
|
|
|
|
self._train_dataset = wds.DataPipeline(*pipeline).with_epoch(num_worker_batches) |
|
self._train_dataloader = wds.WebLoader( |
|
self._train_dataset, |
|
batch_size=None, |
|
shuffle=False, |
|
num_workers=num_workers, |
|
pin_memory=pin_memory, |
|
persistent_workers=persistent_workers, |
|
) |
|
|
|
self._train_dataloader.num_batches = num_batches |
|
self._train_dataloader.num_samples = num_samples |
|
|
|
|
|
pipeline = [ |
|
wds.SimpleShardList(eval_shards_path_or_url), |
|
wds.split_by_worker, |
|
wds.tarfile_to_samples(handler=wds.ignore_and_continue), |
|
*processing_pipeline, |
|
wds.batched(per_gpu_batch_size, partial=False, collation_fn=default_collate), |
|
] |
|
self._eval_dataset = wds.DataPipeline(*pipeline) |
|
self._eval_dataloader = wds.WebLoader( |
|
self._eval_dataset, |
|
batch_size=None, |
|
shuffle=False, |
|
num_workers=num_workers, |
|
pin_memory=pin_memory, |
|
persistent_workers=persistent_workers, |
|
) |
|
|
|
@property |
|
def train_dataset(self): |
|
return self._train_dataset |
|
|
|
@property |
|
def train_dataloader(self): |
|
return self._train_dataloader |
|
|
|
@property |
|
def eval_dataset(self): |
|
return self._eval_dataset |
|
|
|
@property |
|
def eval_dataloader(self): |
|
return self._eval_dataloader |
|
|
|
|
|
def image_grid(imgs, rows, cols): |
|
assert len(imgs) == rows * cols |
|
|
|
w, h = imgs[0].size |
|
grid = Image.new("RGB", size=(cols * w, rows * h)) |
|
|
|
for i, img in enumerate(imgs): |
|
grid.paste(img, box=(i % cols * w, i // cols * h)) |
|
return grid |
|
|
|
|
|
def log_validation(vae, unet, controlnet, args, accelerator, weight_dtype, step): |
|
logger.info("Running validation... ") |
|
|
|
controlnet = accelerator.unwrap_model(controlnet) |
|
|
|
pipeline = StableDiffusionXLControlNetPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
vae=vae, |
|
unet=unet, |
|
controlnet=controlnet, |
|
revision=args.revision, |
|
torch_dtype=weight_dtype, |
|
) |
|
|
|
pipeline = pipeline.to(accelerator.device) |
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
pipeline.enable_xformers_memory_efficient_attention() |
|
|
|
if args.seed is None: |
|
generator = None |
|
else: |
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) |
|
|
|
if len(args.validation_image) == len(args.validation_prompt): |
|
validation_images = args.validation_image |
|
validation_prompts = args.validation_prompt |
|
elif len(args.validation_image) == 1: |
|
validation_images = args.validation_image * len(args.validation_prompt) |
|
validation_prompts = args.validation_prompt |
|
elif len(args.validation_prompt) == 1: |
|
validation_images = args.validation_image |
|
validation_prompts = args.validation_prompt * len(args.validation_image) |
|
else: |
|
raise ValueError( |
|
"number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`" |
|
) |
|
|
|
image_logs = [] |
|
|
|
for validation_prompt, validation_image in zip(validation_prompts, validation_images): |
|
validation_image = Image.open(validation_image).convert("RGB") |
|
validation_image = validation_image.resize((args.resolution, args.resolution)) |
|
|
|
images = [] |
|
|
|
for _ in range(args.num_validation_images): |
|
with torch.autocast("cuda"): |
|
image = pipeline( |
|
validation_prompt, image=validation_image, num_inference_steps=20, generator=generator |
|
).images[0] |
|
images.append(image) |
|
|
|
image_logs.append( |
|
{"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt} |
|
) |
|
|
|
for tracker in accelerator.trackers: |
|
if tracker.name == "tensorboard": |
|
for log in image_logs: |
|
images = log["images"] |
|
validation_prompt = log["validation_prompt"] |
|
validation_image = log["validation_image"] |
|
|
|
formatted_images = [] |
|
|
|
formatted_images.append(np.asarray(validation_image)) |
|
|
|
for image in images: |
|
formatted_images.append(np.asarray(image)) |
|
|
|
formatted_images = np.stack(formatted_images) |
|
|
|
tracker.writer.add_images(validation_prompt, formatted_images, step, dataformats="NHWC") |
|
elif tracker.name == "wandb": |
|
formatted_images = [] |
|
|
|
for log in image_logs: |
|
images = log["images"] |
|
validation_prompt = log["validation_prompt"] |
|
validation_image = log["validation_image"] |
|
|
|
formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning")) |
|
|
|
for image in images: |
|
image = wandb.Image(image, caption=validation_prompt) |
|
formatted_images.append(image) |
|
|
|
tracker.log({"validation": formatted_images}) |
|
else: |
|
logger.warning(f"image logging not implemented for {tracker.name}") |
|
|
|
del pipeline |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
return image_logs |
|
|
|
|
|
def import_model_class_from_model_name_or_path( |
|
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" |
|
): |
|
text_encoder_config = PretrainedConfig.from_pretrained( |
|
pretrained_model_name_or_path, subfolder=subfolder, revision=revision |
|
) |
|
model_class = text_encoder_config.architectures[0] |
|
|
|
if model_class == "CLIPTextModel": |
|
from transformers import CLIPTextModel |
|
|
|
return CLIPTextModel |
|
elif model_class == "CLIPTextModelWithProjection": |
|
from transformers import CLIPTextModelWithProjection |
|
|
|
return CLIPTextModelWithProjection |
|
else: |
|
raise ValueError(f"{model_class} is not supported.") |
|
|
|
|
|
def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None): |
|
img_str = "" |
|
if image_logs is not None: |
|
img_str = "You can find some example images below.\n" |
|
for i, log in enumerate(image_logs): |
|
images = log["images"] |
|
validation_prompt = log["validation_prompt"] |
|
validation_image = log["validation_image"] |
|
validation_image.save(os.path.join(repo_folder, "image_control.png")) |
|
img_str += f"prompt: {validation_prompt}\n" |
|
images = [validation_image] + images |
|
image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png")) |
|
img_str += f"![images_{i})](./images_{i}.png)\n" |
|
|
|
yaml = f""" |
|
--- |
|
license: creativeml-openrail-m |
|
base_model: {base_model} |
|
tags: |
|
- stable-diffusion-xl |
|
- stable-diffusion-xl-diffusers |
|
- text-to-image |
|
- diffusers |
|
- controlnet |
|
- diffusers-training |
|
- webdataset |
|
inference: true |
|
--- |
|
""" |
|
model_card = f""" |
|
# controlnet-{repo_id} |
|
|
|
These are controlnet weights trained on {base_model} with new type of conditioning. |
|
{img_str} |
|
""" |
|
with open(os.path.join(repo_folder, "README.md"), "w") as f: |
|
f.write(yaml + model_card) |
|
|
|
|
|
def parse_args(input_args=None): |
|
parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.") |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--pretrained_vae_model_name_or_path", |
|
type=str, |
|
default=None, |
|
help="Path to an improved VAE to stabilize training. For more details check out: https://github.com/huggingface/diffusers/pull/4038.", |
|
) |
|
parser.add_argument( |
|
"--controlnet_model_name_or_path", |
|
type=str, |
|
default=None, |
|
help="Path to pretrained controlnet model or model identifier from huggingface.co/models." |
|
" If not specified controlnet weights are initialized from unet.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help=( |
|
"Revision of pretrained model identifier from huggingface.co/models. Trainable model components should be" |
|
" float32 precision." |
|
), |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
type=str, |
|
default=None, |
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="controlnet-model", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
type=str, |
|
default=None, |
|
help="The directory where the downloaded models and datasets will be stored.", |
|
) |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--crops_coords_top_left_h", |
|
type=int, |
|
default=0, |
|
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), |
|
) |
|
parser.add_argument( |
|
"--crops_coords_top_left_w", |
|
type=int, |
|
default=0, |
|
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=1) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=500, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. " |
|
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference." |
|
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components." |
|
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step" |
|
"instructions." |
|
), |
|
) |
|
parser.add_argument( |
|
"--checkpoints_total_limit", |
|
type=int, |
|
default=3, |
|
help=("Max number of checkpoints to store."), |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=5e-6, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--lr_num_cycles", |
|
type=int, |
|
default=1, |
|
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", |
|
) |
|
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") |
|
parser.add_argument( |
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." |
|
) |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=1, |
|
help=("Number of subprocesses to use for data loading."), |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="tensorboard", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
parser.add_argument( |
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." |
|
) |
|
parser.add_argument( |
|
"--set_grads_to_none", |
|
action="store_true", |
|
help=( |
|
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" |
|
" behaviors, so disable this argument if it causes any problems. More info:" |
|
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" |
|
), |
|
) |
|
parser.add_argument( |
|
"--train_shards_path_or_url", |
|
type=str, |
|
default=None, |
|
help=( |
|
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," |
|
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," |
|
" or to a folder containing files that 🤗 Datasets can understand." |
|
), |
|
) |
|
parser.add_argument( |
|
"--eval_shards_path_or_url", |
|
type=str, |
|
default=None, |
|
help="The config of the Dataset, leave as None if there's only one config.", |
|
) |
|
parser.add_argument( |
|
"--train_data_dir", |
|
type=str, |
|
default=None, |
|
help=( |
|
"A folder containing the training data. Folder contents must follow the structure described in" |
|
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" |
|
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified." |
|
), |
|
) |
|
parser.add_argument( |
|
"--image_column", type=str, default="image", help="The column of the dataset containing the target image." |
|
) |
|
parser.add_argument( |
|
"--conditioning_image_column", |
|
type=str, |
|
default="conditioning_image", |
|
help="The column of the dataset containing the controlnet conditioning image.", |
|
) |
|
parser.add_argument( |
|
"--caption_column", |
|
type=str, |
|
default="text", |
|
help="The column of the dataset containing a caption or a list of captions.", |
|
) |
|
parser.add_argument( |
|
"--max_train_samples", |
|
type=int, |
|
default=None, |
|
help=( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
), |
|
) |
|
parser.add_argument( |
|
"--proportion_empty_prompts", |
|
type=float, |
|
default=0, |
|
help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).", |
|
) |
|
parser.add_argument( |
|
"--validation_prompt", |
|
type=str, |
|
default=None, |
|
nargs="+", |
|
help=( |
|
"A set of prompts evaluated every `--validation_steps` and logged to `--report_to`." |
|
" Provide either a matching number of `--validation_image`s, a single `--validation_image`" |
|
" to be used with all prompts, or a single prompt that will be used with all `--validation_image`s." |
|
), |
|
) |
|
parser.add_argument( |
|
"--validation_image", |
|
type=str, |
|
default=None, |
|
nargs="+", |
|
help=( |
|
"A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`" |
|
" and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a" |
|
" a single `--validation_prompt` to be used with all `--validation_image`s, or a single" |
|
" `--validation_image` that will be used with all `--validation_prompt`s." |
|
), |
|
) |
|
parser.add_argument( |
|
"--num_validation_images", |
|
type=int, |
|
default=4, |
|
help="Number of images to be generated for each `--validation_image`, `--validation_prompt` pair", |
|
) |
|
parser.add_argument( |
|
"--validation_steps", |
|
type=int, |
|
default=100, |
|
help=( |
|
"Run validation every X steps. Validation consists of running the prompt" |
|
" `args.validation_prompt` multiple times: `args.num_validation_images`" |
|
" and logging the images." |
|
), |
|
) |
|
parser.add_argument( |
|
"--tracker_project_name", |
|
type=str, |
|
default="sd_xl_train_controlnet", |
|
help=( |
|
"The `project_name` argument passed to Accelerator.init_trackers for" |
|
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" |
|
), |
|
) |
|
parser.add_argument( |
|
"--control_type", |
|
type=str, |
|
default="canny", |
|
help=("The type of controlnet conditioning image to use. One of `canny`, `depth`" " Defaults to `canny`."), |
|
) |
|
parser.add_argument( |
|
"--transformer_layers_per_block", |
|
type=str, |
|
default=None, |
|
help=("The number of layers per block in the transformer. If None, defaults to" " `args.transformer_layers`."), |
|
) |
|
parser.add_argument( |
|
"--old_style_controlnet", |
|
action="store_true", |
|
default=False, |
|
help=( |
|
"Use the old style controlnet, which is a single transformer layer with" |
|
" a single head. Defaults to False." |
|
), |
|
) |
|
|
|
if input_args is not None: |
|
args = parser.parse_args(input_args) |
|
else: |
|
args = parser.parse_args() |
|
|
|
if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1: |
|
raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].") |
|
|
|
if args.validation_prompt is not None and args.validation_image is None: |
|
raise ValueError("`--validation_image` must be set if `--validation_prompt` is set") |
|
|
|
if args.validation_prompt is None and args.validation_image is not None: |
|
raise ValueError("`--validation_prompt` must be set if `--validation_image` is set") |
|
|
|
if ( |
|
args.validation_image is not None |
|
and args.validation_prompt is not None |
|
and len(args.validation_image) != 1 |
|
and len(args.validation_prompt) != 1 |
|
and len(args.validation_image) != len(args.validation_prompt) |
|
): |
|
raise ValueError( |
|
"Must provide either 1 `--validation_image`, 1 `--validation_prompt`," |
|
" or the same number of `--validation_prompt`s and `--validation_image`s" |
|
) |
|
|
|
if args.resolution % 8 != 0: |
|
raise ValueError( |
|
"`--resolution` must be divisible by 8 for consistently sized encoded images between the VAE and the controlnet encoder." |
|
) |
|
|
|
return args |
|
|
|
|
|
|
|
def encode_prompt(prompt_batch, text_encoders, tokenizers, proportion_empty_prompts, is_train=True): |
|
prompt_embeds_list = [] |
|
|
|
captions = [] |
|
for caption in prompt_batch: |
|
if random.random() < proportion_empty_prompts: |
|
captions.append("") |
|
elif isinstance(caption, str): |
|
captions.append(caption) |
|
elif isinstance(caption, (list, np.ndarray)): |
|
|
|
captions.append(random.choice(caption) if is_train else caption[0]) |
|
|
|
with torch.no_grad(): |
|
for tokenizer, text_encoder in zip(tokenizers, text_encoders): |
|
text_inputs = tokenizer( |
|
captions, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
prompt_embeds = text_encoder( |
|
text_input_ids.to(text_encoder.device), |
|
output_hidden_states=True, |
|
) |
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds[0] |
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) |
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) |
|
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) |
|
return prompt_embeds, pooled_prompt_embeds |
|
|
|
|
|
def main(args): |
|
if args.report_to == "wandb" and args.hub_token is not None: |
|
raise ValueError( |
|
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." |
|
" Please use `huggingface-cli login` to authenticate with the Hub." |
|
) |
|
|
|
logging_dir = Path(args.output_dir, args.logging_dir) |
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.report_to, |
|
project_config=accelerator_project_config, |
|
) |
|
|
|
|
|
if torch.backends.mps.is_available(): |
|
accelerator.native_amp = False |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
transformers.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
transformers.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
if args.push_to_hub: |
|
repo_id = create_repo( |
|
repo_id=args.hub_model_id or Path(args.output_dir).name, |
|
exist_ok=True, |
|
token=args.hub_token, |
|
private=True, |
|
).repo_id |
|
|
|
|
|
tokenizer_one = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False |
|
) |
|
tokenizer_two = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="tokenizer_2", revision=args.revision, use_fast=False |
|
) |
|
|
|
|
|
text_encoder_cls_one = import_model_class_from_model_name_or_path( |
|
args.pretrained_model_name_or_path, args.revision |
|
) |
|
text_encoder_cls_two = import_model_class_from_model_name_or_path( |
|
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2" |
|
) |
|
|
|
|
|
|
|
noise_scheduler = EulerDiscreteScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") |
|
text_encoder_one = text_encoder_cls_one.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision |
|
) |
|
text_encoder_two = text_encoder_cls_two.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision |
|
) |
|
vae_path = ( |
|
args.pretrained_model_name_or_path |
|
if args.pretrained_vae_model_name_or_path is None |
|
else args.pretrained_vae_model_name_or_path |
|
) |
|
vae = AutoencoderKL.from_pretrained( |
|
vae_path, |
|
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, |
|
revision=args.revision, |
|
) |
|
unet = UNet2DConditionModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision |
|
) |
|
|
|
if args.controlnet_model_name_or_path: |
|
logger.info("Loading existing controlnet weights") |
|
pre_controlnet = ControlNetModel.from_pretrained(args.controlnet_model_name_or_path) |
|
else: |
|
logger.info("Initializing controlnet weights from unet") |
|
pre_controlnet = ControlNetModel.from_unet(unet) |
|
|
|
if args.transformer_layers_per_block is not None: |
|
transformer_layers_per_block = [int(x) for x in args.transformer_layers_per_block.split(",")] |
|
down_block_types = ["DownBlock2D" if l == 0 else "CrossAttnDownBlock2D" for l in transformer_layers_per_block] |
|
controlnet = ControlNetModel.from_config( |
|
pre_controlnet.config, |
|
down_block_types=down_block_types, |
|
transformer_layers_per_block=transformer_layers_per_block, |
|
) |
|
controlnet.load_state_dict(pre_controlnet.state_dict(), strict=False) |
|
del pre_controlnet |
|
else: |
|
controlnet = pre_controlnet |
|
|
|
if args.control_type == "depth": |
|
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas") |
|
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas") |
|
depth_model.requires_grad_(False) |
|
else: |
|
feature_extractor = None |
|
depth_model = None |
|
|
|
|
|
if version.parse(accelerate.__version__) >= version.parse("0.16.0"): |
|
|
|
def save_model_hook(models, weights, output_dir): |
|
if accelerator.is_main_process: |
|
i = len(weights) - 1 |
|
|
|
while len(weights) > 0: |
|
weights.pop() |
|
model = models[i] |
|
|
|
sub_dir = "controlnet" |
|
model.save_pretrained(os.path.join(output_dir, sub_dir)) |
|
|
|
i -= 1 |
|
|
|
def load_model_hook(models, input_dir): |
|
while len(models) > 0: |
|
|
|
model = models.pop() |
|
|
|
|
|
load_model = ControlNetModel.from_pretrained(input_dir, subfolder="controlnet") |
|
model.register_to_config(**load_model.config) |
|
|
|
model.load_state_dict(load_model.state_dict()) |
|
del load_model |
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook) |
|
accelerator.register_load_state_pre_hook(load_model_hook) |
|
|
|
vae.requires_grad_(False) |
|
unet.requires_grad_(False) |
|
text_encoder_one.requires_grad_(False) |
|
text_encoder_two.requires_grad_(False) |
|
controlnet.train() |
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
if is_xformers_available(): |
|
import xformers |
|
|
|
xformers_version = version.parse(xformers.__version__) |
|
if xformers_version == version.parse("0.0.16"): |
|
logger.warning( |
|
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." |
|
) |
|
unet.enable_xformers_memory_efficient_attention() |
|
controlnet.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
if args.gradient_checkpointing: |
|
controlnet.enable_gradient_checkpointing() |
|
|
|
|
|
low_precision_error_string = ( |
|
" Please make sure to always have all model weights in full float32 precision when starting training - even if" |
|
" doing mixed precision training, copy of the weights should still be float32." |
|
) |
|
|
|
if accelerator.unwrap_model(controlnet).dtype != torch.float32: |
|
raise ValueError( |
|
f"Controlnet loaded as datatype {accelerator.unwrap_model(controlnet).dtype}. {low_precision_error_string}" |
|
) |
|
|
|
|
|
|
|
if args.allow_tf32: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
) |
|
|
|
|
|
if args.use_8bit_adam: |
|
try: |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError( |
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." |
|
) |
|
|
|
optimizer_class = bnb.optim.AdamW8bit |
|
else: |
|
optimizer_class = torch.optim.AdamW |
|
|
|
|
|
params_to_optimize = controlnet.parameters() |
|
optimizer = optimizer_class( |
|
params_to_optimize, |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
|
|
|
|
if args.pretrained_vae_model_name_or_path is not None: |
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
else: |
|
vae.to(accelerator.device, dtype=torch.float32) |
|
unet.to(accelerator.device, dtype=weight_dtype) |
|
text_encoder_one.to(accelerator.device, dtype=weight_dtype) |
|
text_encoder_two.to(accelerator.device, dtype=weight_dtype) |
|
if args.control_type == "depth": |
|
depth_model.to(accelerator.device, dtype=weight_dtype) |
|
|
|
|
|
|
|
def compute_embeddings( |
|
prompt_batch, original_sizes, crop_coords, proportion_empty_prompts, text_encoders, tokenizers, is_train=True |
|
): |
|
target_size = (args.resolution, args.resolution) |
|
original_sizes = list(map(list, zip(*original_sizes))) |
|
crops_coords_top_left = list(map(list, zip(*crop_coords))) |
|
|
|
original_sizes = torch.tensor(original_sizes, dtype=torch.long) |
|
crops_coords_top_left = torch.tensor(crops_coords_top_left, dtype=torch.long) |
|
|
|
|
|
prompt_embeds, pooled_prompt_embeds = encode_prompt( |
|
prompt_batch, text_encoders, tokenizers, proportion_empty_prompts, is_train |
|
) |
|
add_text_embeds = pooled_prompt_embeds |
|
|
|
|
|
|
|
add_time_ids = list(target_size) |
|
add_time_ids = torch.tensor([add_time_ids]) |
|
add_time_ids = add_time_ids.repeat(len(prompt_batch), 1) |
|
|
|
add_time_ids = torch.cat([original_sizes, crops_coords_top_left, add_time_ids], dim=-1) |
|
add_time_ids = add_time_ids.to(accelerator.device, dtype=prompt_embeds.dtype) |
|
|
|
prompt_embeds = prompt_embeds.to(accelerator.device) |
|
add_text_embeds = add_text_embeds.to(accelerator.device) |
|
unet_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} |
|
|
|
return {"prompt_embeds": prompt_embeds, **unet_added_cond_kwargs} |
|
|
|
def get_sigmas(timesteps, n_dim=4, dtype=torch.float32): |
|
sigmas = noise_scheduler.sigmas.to(device=accelerator.device, dtype=dtype) |
|
schedule_timesteps = noise_scheduler.timesteps.to(accelerator.device) |
|
timesteps = timesteps.to(accelerator.device) |
|
|
|
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] |
|
|
|
sigma = sigmas[step_indices].flatten() |
|
while len(sigma.shape) < n_dim: |
|
sigma = sigma.unsqueeze(-1) |
|
return sigma |
|
|
|
dataset = Text2ImageDataset( |
|
train_shards_path_or_url=args.train_shards_path_or_url, |
|
eval_shards_path_or_url=args.eval_shards_path_or_url, |
|
num_train_examples=args.max_train_samples, |
|
per_gpu_batch_size=args.train_batch_size, |
|
global_batch_size=args.train_batch_size * accelerator.num_processes, |
|
num_workers=args.dataloader_num_workers, |
|
resolution=args.resolution, |
|
center_crop=False, |
|
random_flip=False, |
|
shuffle_buffer_size=1000, |
|
pin_memory=True, |
|
persistent_workers=True, |
|
control_type=args.control_type, |
|
feature_extractor=feature_extractor, |
|
) |
|
train_dataloader = dataset.train_dataloader |
|
|
|
|
|
|
|
text_encoders = [text_encoder_one, text_encoder_two] |
|
tokenizers = [tokenizer_one, tokenizer_two] |
|
|
|
compute_embeddings_fn = functools.partial( |
|
compute_embeddings, |
|
proportion_empty_prompts=args.proportion_empty_prompts, |
|
text_encoders=text_encoders, |
|
tokenizers=tokenizers, |
|
) |
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, |
|
num_training_steps=args.max_train_steps * accelerator.num_processes, |
|
num_cycles=args.lr_num_cycles, |
|
power=args.lr_power, |
|
) |
|
|
|
|
|
controlnet, optimizer, lr_scheduler = accelerator.prepare(controlnet, optimizer, lr_scheduler) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
tracker_config = dict(vars(args)) |
|
|
|
|
|
tracker_config.pop("validation_prompt") |
|
tracker_config.pop("validation_image") |
|
|
|
accelerator.init_trackers(args.tracker_project_name, config=tracker_config) |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num batches each epoch = {train_dataloader.num_batches}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
global_step = 0 |
|
first_epoch = 0 |
|
|
|
|
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint != "latest": |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
if path is None: |
|
accelerator.print( |
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
) |
|
args.resume_from_checkpoint = None |
|
initial_global_step = 0 |
|
else: |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
global_step = int(path.split("-")[1]) |
|
|
|
initial_global_step = global_step |
|
first_epoch = global_step // num_update_steps_per_epoch |
|
else: |
|
initial_global_step = 0 |
|
|
|
progress_bar = tqdm( |
|
range(0, args.max_train_steps), |
|
initial=initial_global_step, |
|
desc="Steps", |
|
|
|
disable=not accelerator.is_local_main_process, |
|
) |
|
|
|
image_logs = None |
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
for step, batch in enumerate(train_dataloader): |
|
with accelerator.accumulate(controlnet): |
|
image, control_image, text, orig_size, crop_coords = batch |
|
|
|
encoded_text = compute_embeddings_fn(text, orig_size, crop_coords) |
|
image = image.to(accelerator.device, non_blocking=True) |
|
control_image = control_image.to(accelerator.device, non_blocking=True) |
|
|
|
if args.pretrained_vae_model_name_or_path is not None: |
|
pixel_values = image.to(dtype=weight_dtype) |
|
if vae.dtype != weight_dtype: |
|
vae.to(dtype=weight_dtype) |
|
else: |
|
pixel_values = image |
|
|
|
|
|
|
|
latents = [] |
|
for i in range(0, pixel_values.shape[0], 8): |
|
latents.append(vae.encode(pixel_values[i : i + 8]).latent_dist.sample()) |
|
latents = torch.cat(latents, dim=0) |
|
|
|
latents = latents * vae.config.scaling_factor |
|
if args.pretrained_vae_model_name_or_path is None: |
|
latents = latents.to(weight_dtype) |
|
|
|
if args.control_type == "depth": |
|
control_image = control_image.to(weight_dtype) |
|
with torch.autocast("cuda"): |
|
depth_map = depth_model(control_image).predicted_depth |
|
depth_map = torch.nn.functional.interpolate( |
|
depth_map.unsqueeze(1), |
|
size=image.shape[2:], |
|
mode="bicubic", |
|
align_corners=False, |
|
) |
|
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) |
|
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) |
|
depth_map = (depth_map - depth_min) / (depth_max - depth_min) |
|
control_image = (depth_map * 255.0).to(torch.uint8).float() / 255.0 |
|
control_image = torch.cat([control_image] * 3, dim=1) |
|
|
|
|
|
noise = torch.randn_like(latents) |
|
bsz = latents.shape[0] |
|
|
|
|
|
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) |
|
timesteps = timesteps.long() |
|
|
|
|
|
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
|
sigmas = get_sigmas(timesteps, len(noisy_latents.shape), noisy_latents.dtype) |
|
inp_noisy_latents = noisy_latents / ((sigmas**2 + 1) ** 0.5) |
|
|
|
|
|
controlnet_image = control_image.to(dtype=weight_dtype) |
|
prompt_embeds = encoded_text.pop("prompt_embeds") |
|
down_block_res_samples, mid_block_res_sample = controlnet( |
|
inp_noisy_latents, |
|
timesteps, |
|
encoder_hidden_states=prompt_embeds, |
|
added_cond_kwargs=encoded_text, |
|
controlnet_cond=controlnet_image, |
|
return_dict=False, |
|
) |
|
|
|
|
|
model_pred = unet( |
|
inp_noisy_latents, |
|
timesteps, |
|
encoder_hidden_states=prompt_embeds, |
|
added_cond_kwargs=encoded_text, |
|
down_block_additional_residuals=[ |
|
sample.to(dtype=weight_dtype) for sample in down_block_res_samples |
|
], |
|
mid_block_additional_residual=mid_block_res_sample.to(dtype=weight_dtype), |
|
).sample |
|
|
|
model_pred = model_pred * (-sigmas) + noisy_latents |
|
weighing = sigmas**-2.0 |
|
|
|
|
|
if noise_scheduler.config.prediction_type == "epsilon": |
|
target = latents |
|
elif noise_scheduler.config.prediction_type == "v_prediction": |
|
target = noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") |
|
loss = torch.mean( |
|
(weighing.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1), 1 |
|
) |
|
loss = loss.mean() |
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients: |
|
params_to_clip = controlnet.parameters() |
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad(set_to_none=args.set_grads_to_none) |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
if accelerator.is_main_process: |
|
if global_step % args.checkpointing_steps == 0: |
|
|
|
if args.checkpoints_total_limit is not None: |
|
checkpoints = os.listdir(args.output_dir) |
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] |
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) |
|
|
|
|
|
if len(checkpoints) >= args.checkpoints_total_limit: |
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 |
|
removing_checkpoints = checkpoints[0:num_to_remove] |
|
|
|
logger.info( |
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" |
|
) |
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") |
|
|
|
for removing_checkpoint in removing_checkpoints: |
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) |
|
shutil.rmtree(removing_checkpoint) |
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
accelerator.save_state(save_path) |
|
logger.info(f"Saved state to {save_path}") |
|
|
|
if args.validation_prompt is not None and global_step % args.validation_steps == 0: |
|
image_logs = log_validation( |
|
vae, unet, controlnet, args, accelerator, weight_dtype, global_step |
|
) |
|
|
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
controlnet = accelerator.unwrap_model(controlnet) |
|
controlnet.save_pretrained(args.output_dir) |
|
|
|
if args.push_to_hub: |
|
save_model_card( |
|
repo_id, |
|
image_logs=image_logs, |
|
base_model=args.pretrained_model_name_or_path, |
|
repo_folder=args.output_dir, |
|
) |
|
upload_folder( |
|
repo_id=repo_id, |
|
folder_path=args.output_dir, |
|
commit_message="End of training", |
|
ignore_patterns=["step_*", "epoch_*"], |
|
) |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
main(args) |
|
|