|
import os |
|
import random |
|
|
|
import torch |
|
import torchvision.transforms as transforms |
|
from PIL import Image |
|
|
|
|
|
def recalculate_box_and_verify_if_valid(x, y, w, h, image_size, original_image_size, min_box_size): |
|
scale = image_size / min(original_image_size) |
|
crop_y = (original_image_size[1] * scale - image_size) // 2 |
|
crop_x = (original_image_size[0] * scale - image_size) // 2 |
|
x0 = max(x * scale - crop_x, 0) |
|
y0 = max(y * scale - crop_y, 0) |
|
x1 = min((x + w) * scale - crop_x, image_size) |
|
y1 = min((y + h) * scale - crop_y, image_size) |
|
if (x1 - x0) * (y1 - y0) / (image_size * image_size) < min_box_size: |
|
return False, (None, None, None, None) |
|
return True, (x0, y0, x1, y1) |
|
|
|
|
|
class COCODataset(torch.utils.data.Dataset): |
|
def __init__( |
|
self, |
|
data_path, |
|
image_path, |
|
image_size=512, |
|
min_box_size=0.01, |
|
max_boxes_per_data=8, |
|
tokenizer=None, |
|
): |
|
super().__init__() |
|
self.min_box_size = min_box_size |
|
self.max_boxes_per_data = max_boxes_per_data |
|
self.image_size = image_size |
|
self.image_path = image_path |
|
self.tokenizer = tokenizer |
|
self.transforms = transforms.Compose( |
|
[ |
|
transforms.Resize(image_size, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.CenterCrop(image_size), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
self.data_list = torch.load(data_path, map_location="cpu") |
|
|
|
def __getitem__(self, index): |
|
if self.max_boxes_per_data > 99: |
|
assert False, "Are you sure setting such large number of boxes per image?" |
|
|
|
out = {} |
|
|
|
data = self.data_list[index] |
|
image = Image.open(os.path.join(self.image_path, data["file_path"])).convert("RGB") |
|
original_image_size = image.size |
|
out["pixel_values"] = self.transforms(image) |
|
|
|
annos = data["annos"] |
|
|
|
areas, valid_annos = [], [] |
|
for anno in annos: |
|
|
|
x0, y0, x1, y1 = anno["bbox"] |
|
x, y, w, h = x0, y0, x1 - x0, y1 - y0 |
|
valid, (x0, y0, x1, y1) = recalculate_box_and_verify_if_valid( |
|
x, y, w, h, self.image_size, original_image_size, self.min_box_size |
|
) |
|
if valid: |
|
anno["bbox"] = [x0, y0, x1, y1] |
|
areas.append((x1 - x0) * (y1 - y0)) |
|
valid_annos.append(anno) |
|
|
|
|
|
wanted_idxs = torch.tensor(areas).sort(descending=True)[1] |
|
wanted_idxs = wanted_idxs[: self.max_boxes_per_data] |
|
valid_annos = [valid_annos[i] for i in wanted_idxs] |
|
|
|
out["boxes"] = torch.zeros(self.max_boxes_per_data, 4) |
|
out["masks"] = torch.zeros(self.max_boxes_per_data) |
|
out["text_embeddings_before_projection"] = torch.zeros(self.max_boxes_per_data, 768) |
|
|
|
for i, anno in enumerate(valid_annos): |
|
out["boxes"][i] = torch.tensor(anno["bbox"]) / self.image_size |
|
out["masks"][i] = 1 |
|
out["text_embeddings_before_projection"][i] = anno["text_embeddings_before_projection"] |
|
|
|
prob_drop_boxes = 0.1 |
|
if random.random() < prob_drop_boxes: |
|
out["masks"][:] = 0 |
|
|
|
caption = random.choice(data["captions"]) |
|
|
|
prob_drop_captions = 0.5 |
|
if random.random() < prob_drop_captions: |
|
caption = "" |
|
caption = self.tokenizer( |
|
caption, |
|
max_length=self.tokenizer.model_max_length, |
|
padding="max_length", |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
out["caption"] = caption |
|
|
|
return out |
|
|
|
def __len__(self): |
|
return len(self.data_list) |
|
|