|
|
|
|
|
|
|
import argparse |
|
import logging |
|
import math |
|
import os |
|
import shutil |
|
from pathlib import Path |
|
|
|
import accelerate |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
import transformers |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import ProjectConfiguration, set_seed |
|
from packaging import version |
|
from tqdm.auto import tqdm |
|
|
|
import diffusers |
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDPMScheduler, |
|
EulerDiscreteScheduler, |
|
StableDiffusionGLIGENPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.utils import is_wandb_available, make_image_grid |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils.torch_utils import is_compiled_module |
|
|
|
|
|
if is_wandb_available(): |
|
pass |
|
|
|
|
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
@torch.no_grad() |
|
def log_validation(vae, text_encoder, tokenizer, unet, noise_scheduler, args, accelerator, step, weight_dtype): |
|
if accelerator.is_main_process: |
|
print("generate test images...") |
|
unet = accelerator.unwrap_model(unet) |
|
vae.to(accelerator.device, dtype=torch.float32) |
|
|
|
pipeline = StableDiffusionGLIGENPipeline( |
|
vae, |
|
text_encoder, |
|
tokenizer, |
|
unet, |
|
EulerDiscreteScheduler.from_config(noise_scheduler.config), |
|
safety_checker=None, |
|
feature_extractor=None, |
|
) |
|
pipeline = pipeline.to(accelerator.device) |
|
pipeline.set_progress_bar_config(disable=not accelerator.is_main_process) |
|
if args.enable_xformers_memory_efficient_attention: |
|
pipeline.enable_xformers_memory_efficient_attention() |
|
|
|
if args.seed is None: |
|
generator = None |
|
else: |
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) |
|
|
|
prompt = "A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky" |
|
boxes = [ |
|
[0.041015625, 0.548828125, 0.453125, 0.859375], |
|
[0.525390625, 0.552734375, 0.93359375, 0.865234375], |
|
[0.12890625, 0.015625, 0.412109375, 0.279296875], |
|
[0.578125, 0.08203125, 0.857421875, 0.27734375], |
|
] |
|
gligen_phrases = ["a green car", "a blue truck", "a red air balloon", "a bird"] |
|
images = pipeline( |
|
prompt=prompt, |
|
gligen_phrases=gligen_phrases, |
|
gligen_boxes=boxes, |
|
gligen_scheduled_sampling_beta=1.0, |
|
output_type="pil", |
|
num_inference_steps=50, |
|
negative_prompt="artifacts, blurry, smooth texture, bad quality, distortions, unrealistic, distorted image, bad proportions, duplicate", |
|
num_images_per_prompt=4, |
|
generator=generator, |
|
).images |
|
os.makedirs(os.path.join(args.output_dir, "images"), exist_ok=True) |
|
make_image_grid(images, 1, 4).save( |
|
os.path.join(args.output_dir, "images", f"generated-images-{step:06d}-{accelerator.process_index:02d}.png") |
|
) |
|
|
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
|
|
|
|
def parse_args(input_args=None): |
|
parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.") |
|
parser.add_argument( |
|
"--data_path", |
|
type=str, |
|
default="coco_train2017.pth", |
|
help="Path to training dataset.", |
|
) |
|
parser.add_argument( |
|
"--image_path", |
|
type=str, |
|
default="coco_train2017.pth", |
|
help="Path to training images.", |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="controlnet-model", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=1) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=500, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. " |
|
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference." |
|
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components." |
|
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step" |
|
"instructions." |
|
), |
|
) |
|
parser.add_argument( |
|
"--checkpoints_total_limit", |
|
type=int, |
|
default=None, |
|
help=("Max number of checkpoints to store."), |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=5e-6, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--lr_num_cycles", |
|
type=int, |
|
default=1, |
|
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", |
|
) |
|
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=0, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="tensorboard", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
parser.add_argument( |
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." |
|
) |
|
parser.add_argument( |
|
"--set_grads_to_none", |
|
action="store_true", |
|
help=( |
|
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" |
|
" behaviors, so disable this argument if it causes any problems. More info:" |
|
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" |
|
), |
|
) |
|
parser.add_argument( |
|
"--tracker_project_name", |
|
type=str, |
|
default="train_controlnet", |
|
help=( |
|
"The `project_name` argument passed to Accelerator.init_trackers for" |
|
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" |
|
), |
|
) |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def main(args): |
|
logging_dir = Path(args.output_dir, args.logging_dir) |
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.report_to, |
|
project_config=accelerator_project_config, |
|
) |
|
|
|
|
|
if torch.backends.mps.is_available(): |
|
accelerator.native_amp = False |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
transformers.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
transformers.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
pretrained_model_name_or_path = "masterful/gligen-1-4-generation-text-box" |
|
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer") |
|
noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler") |
|
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder="text_encoder") |
|
|
|
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae") |
|
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet") |
|
|
|
|
|
def unwrap_model(model): |
|
model = accelerator.unwrap_model(model) |
|
model = model._orig_mod if is_compiled_module(model) else model |
|
return model |
|
|
|
|
|
if version.parse(accelerate.__version__) >= version.parse("0.16.0"): |
|
|
|
def save_model_hook(models, weights, output_dir): |
|
if accelerator.is_main_process: |
|
i = len(weights) - 1 |
|
|
|
while len(weights) > 0: |
|
weights.pop() |
|
model = models[i] |
|
|
|
sub_dir = "unet" |
|
model.save_pretrained(os.path.join(output_dir, sub_dir)) |
|
|
|
i -= 1 |
|
|
|
def load_model_hook(models, input_dir): |
|
while len(models) > 0: |
|
|
|
model = models.pop() |
|
|
|
|
|
load_model = unet.from_pretrained(input_dir, subfolder="unet") |
|
model.register_to_config(**load_model.config) |
|
|
|
model.load_state_dict(load_model.state_dict()) |
|
del load_model |
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook) |
|
accelerator.register_load_state_pre_hook(load_model_hook) |
|
|
|
vae.requires_grad_(False) |
|
unet.requires_grad_(False) |
|
text_encoder.requires_grad_(False) |
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
if is_xformers_available(): |
|
import xformers |
|
|
|
xformers_version = version.parse(xformers.__version__) |
|
if xformers_version == version.parse("0.0.16"): |
|
logger.warning( |
|
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." |
|
) |
|
unet.enable_xformers_memory_efficient_attention() |
|
|
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
|
|
|
|
|
|
|
|
low_precision_error_string = ( |
|
" Please make sure to always have all model weights in full float32 precision when starting training - even if" |
|
" doing mixed precision training, copy of the weights should still be float32." |
|
) |
|
|
|
if unwrap_model(unet).dtype != torch.float32: |
|
raise ValueError(f"Controlnet loaded as datatype {unwrap_model(unet).dtype}. {low_precision_error_string}") |
|
|
|
|
|
|
|
if args.allow_tf32: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
) |
|
|
|
optimizer_class = torch.optim.AdamW |
|
|
|
for n, m in unet.named_modules(): |
|
if ("fuser" in n) or ("position_net" in n): |
|
import torch.nn as nn |
|
|
|
if isinstance(m, (nn.Linear, nn.LayerNorm)): |
|
m.reset_parameters() |
|
params_to_optimize = [] |
|
for n, p in unet.named_parameters(): |
|
if ("fuser" in n) or ("position_net" in n): |
|
p.requires_grad = True |
|
params_to_optimize.append(p) |
|
optimizer = optimizer_class( |
|
params_to_optimize, |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
from dataset import COCODataset |
|
|
|
train_dataset = COCODataset( |
|
data_path=args.data_path, |
|
image_path=args.image_path, |
|
tokenizer=tokenizer, |
|
image_size=args.resolution, |
|
max_boxes_per_data=30, |
|
) |
|
|
|
print("num samples: ", len(train_dataset)) |
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, |
|
shuffle=True, |
|
|
|
batch_size=args.train_batch_size, |
|
num_workers=args.dataloader_num_workers, |
|
) |
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, |
|
num_training_steps=args.max_train_steps * accelerator.num_processes, |
|
num_cycles=args.lr_num_cycles, |
|
power=args.lr_power, |
|
) |
|
|
|
|
|
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
unet, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
|
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
|
|
unet.to(accelerator.device, dtype=torch.float32) |
|
text_encoder.to(accelerator.device, dtype=weight_dtype) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
tracker_config = dict(vars(args)) |
|
|
|
|
|
|
|
|
|
|
|
accelerator.init_trackers(args.tracker_project_name, config=tracker_config) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
global_step = 0 |
|
first_epoch = 0 |
|
|
|
|
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint != "latest": |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
if path is None: |
|
accelerator.print( |
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
) |
|
args.resume_from_checkpoint = None |
|
initial_global_step = 0 |
|
else: |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
global_step = int(path.split("-")[1]) |
|
|
|
initial_global_step = global_step |
|
first_epoch = global_step // num_update_steps_per_epoch |
|
else: |
|
initial_global_step = 0 |
|
|
|
progress_bar = tqdm( |
|
range(0, args.max_train_steps), |
|
initial=initial_global_step, |
|
desc="Steps", |
|
|
|
disable=not accelerator.is_local_main_process, |
|
) |
|
|
|
log_validation( |
|
vae, |
|
text_encoder, |
|
tokenizer, |
|
unet, |
|
noise_scheduler, |
|
args, |
|
accelerator, |
|
global_step, |
|
weight_dtype, |
|
) |
|
|
|
|
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
for step, batch in enumerate(train_dataloader): |
|
with accelerator.accumulate(unet): |
|
|
|
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() |
|
latents = latents * vae.config.scaling_factor |
|
|
|
|
|
noise = torch.randn_like(latents) |
|
bsz = latents.shape[0] |
|
|
|
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) |
|
timesteps = timesteps.long() |
|
|
|
|
|
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
|
|
|
with torch.no_grad(): |
|
|
|
encoder_hidden_states = text_encoder( |
|
batch["caption"]["input_ids"].squeeze(1), |
|
|
|
return_dict=False, |
|
)[0] |
|
|
|
cross_attention_kwargs = {} |
|
cross_attention_kwargs["gligen"] = { |
|
"boxes": batch["boxes"], |
|
"positive_embeddings": batch["text_embeddings_before_projection"], |
|
"masks": batch["masks"], |
|
} |
|
|
|
model_pred = unet( |
|
noisy_latents, |
|
timesteps, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if noise_scheduler.config.prediction_type == "epsilon": |
|
target = noise |
|
elif noise_scheduler.config.prediction_type == "v_prediction": |
|
target = noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") |
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") |
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients: |
|
accelerator.clip_grad_norm_(params_to_optimize, args.max_grad_norm) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad(set_to_none=args.set_grads_to_none) |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
if global_step % args.checkpointing_steps == 0: |
|
if accelerator.is_main_process: |
|
|
|
if args.checkpoints_total_limit is not None: |
|
checkpoints = os.listdir(args.output_dir) |
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] |
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) |
|
|
|
|
|
if len(checkpoints) >= args.checkpoints_total_limit: |
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 |
|
removing_checkpoints = checkpoints[0:num_to_remove] |
|
|
|
logger.info( |
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" |
|
) |
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") |
|
|
|
for removing_checkpoint in removing_checkpoints: |
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) |
|
shutil.rmtree(removing_checkpoint) |
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step:06d}") |
|
accelerator.save_state(save_path) |
|
logger.info(f"Saved state to {save_path}") |
|
|
|
|
|
log_validation( |
|
vae, |
|
text_encoder, |
|
tokenizer, |
|
unet, |
|
noise_scheduler, |
|
args, |
|
accelerator, |
|
global_step, |
|
weight_dtype, |
|
) |
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
unet = unwrap_model(unet) |
|
unet.save_pretrained(args.output_dir) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
main(args) |
|
|