|
import argparse |
|
import copy |
|
import itertools |
|
import logging |
|
import math |
|
import os |
|
import random |
|
import shutil |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
import torchvision.transforms.v2 as transforms_v2 |
|
import transformers |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import set_seed |
|
from huggingface_hub import create_repo, upload_folder |
|
from packaging import version |
|
from peft import LoraConfig, PeftModel, get_peft_model |
|
from PIL import Image |
|
from PIL.ImageOps import exif_transpose |
|
from torch.utils.data import Dataset |
|
from tqdm.auto import tqdm |
|
from transformers import AutoTokenizer, CLIPTextModel |
|
|
|
import diffusers |
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDPMScheduler, |
|
DPMSolverMultistepScheduler, |
|
StableDiffusionInpaintPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.utils import check_min_version, is_wandb_available |
|
from diffusers.utils.import_utils import is_xformers_available |
|
|
|
|
|
if is_wandb_available(): |
|
import wandb |
|
|
|
|
|
check_min_version("0.20.1") |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def make_mask(images, resolution, times=30): |
|
mask, times = torch.ones_like(images[0:1, :, :]), np.random.randint(1, times) |
|
min_size, max_size, margin = np.array([0.03, 0.25, 0.01]) * resolution |
|
max_size = min(max_size, resolution - margin * 2) |
|
|
|
for _ in range(times): |
|
width = np.random.randint(int(min_size), int(max_size)) |
|
height = np.random.randint(int(min_size), int(max_size)) |
|
|
|
x_start = np.random.randint(int(margin), resolution - int(margin) - width + 1) |
|
y_start = np.random.randint(int(margin), resolution - int(margin) - height + 1) |
|
mask[:, y_start : y_start + height, x_start : x_start + width] = 0 |
|
|
|
mask = 1 - mask if random.random() < 0.5 else mask |
|
return mask |
|
|
|
|
|
def save_model_card( |
|
repo_id: str, |
|
images=None, |
|
base_model=str, |
|
repo_folder=None, |
|
): |
|
img_str = "" |
|
for i, image in enumerate(images): |
|
image.save(os.path.join(repo_folder, f"image_{i}.png")) |
|
img_str += f"![img_{i}](./image_{i}.png)\n" |
|
|
|
yaml = f""" |
|
--- |
|
license: creativeml-openrail-m |
|
base_model: {base_model} |
|
prompt: "a photo of sks" |
|
tags: |
|
- stable-diffusion-inpainting |
|
- stable-diffusion-inpainting-diffusers |
|
- text-to-image |
|
- diffusers |
|
- realfill |
|
- diffusers-training |
|
inference: true |
|
--- |
|
""" |
|
model_card = f""" |
|
# RealFill - {repo_id} |
|
|
|
This is a realfill model derived from {base_model}. The weights were trained using [RealFill](https://realfill.github.io/). |
|
You can find some example images in the following. \n |
|
{img_str} |
|
""" |
|
with open(os.path.join(repo_folder, "README.md"), "w") as f: |
|
f.write(yaml + model_card) |
|
|
|
|
|
def log_validation( |
|
text_encoder, |
|
tokenizer, |
|
unet, |
|
args, |
|
accelerator, |
|
weight_dtype, |
|
epoch, |
|
): |
|
logger.info(f"Running validation... \nGenerating {args.num_validation_images} images") |
|
|
|
|
|
pipeline = StableDiffusionInpaintPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
tokenizer=tokenizer, |
|
revision=args.revision, |
|
torch_dtype=weight_dtype, |
|
) |
|
|
|
|
|
|
|
pipeline.unet = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) |
|
pipeline.text_encoder = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) |
|
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) |
|
|
|
pipeline = pipeline.to(accelerator.device) |
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
|
|
generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed) |
|
|
|
target_dir = Path(args.train_data_dir) / "target" |
|
target_image, target_mask = target_dir / "target.png", target_dir / "mask.png" |
|
image, mask_image = Image.open(target_image), Image.open(target_mask) |
|
|
|
if image.mode != "RGB": |
|
image = image.convert("RGB") |
|
|
|
images = [] |
|
for _ in range(args.num_validation_images): |
|
image = pipeline( |
|
prompt="a photo of sks", |
|
image=image, |
|
mask_image=mask_image, |
|
num_inference_steps=25, |
|
guidance_scale=5, |
|
generator=generator, |
|
).images[0] |
|
images.append(image) |
|
|
|
for tracker in accelerator.trackers: |
|
if tracker.name == "tensorboard": |
|
np_images = np.stack([np.asarray(img) for img in images]) |
|
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") |
|
if tracker.name == "wandb": |
|
tracker.log({"validation": [wandb.Image(image, caption=str(i)) for i, image in enumerate(images)]}) |
|
|
|
del pipeline |
|
torch.cuda.empty_cache() |
|
|
|
return images |
|
|
|
|
|
def parse_args(input_args=None): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
type=str, |
|
default=None, |
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--train_data_dir", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="A folder containing the training data of images.", |
|
) |
|
parser.add_argument( |
|
"--num_validation_images", |
|
type=int, |
|
default=4, |
|
help="Number of images that should be generated during validation with `validation_conditioning`.", |
|
) |
|
parser.add_argument( |
|
"--validation_steps", |
|
type=int, |
|
default=100, |
|
help=( |
|
"Run realfill validation every X steps. RealFill validation consists of running the conditioning" |
|
" `args.validation_conditioning` multiple times: `args.num_validation_images`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="realfill-model", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=1) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=500, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" |
|
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" |
|
" training using `--resume_from_checkpoint`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--checkpoints_total_limit", |
|
type=int, |
|
default=None, |
|
help=("Max number of checkpoints to store."), |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument( |
|
"--unet_learning_rate", |
|
type=float, |
|
default=2e-4, |
|
help="Learning rate to use for unet.", |
|
) |
|
parser.add_argument( |
|
"--text_encoder_learning_rate", |
|
type=float, |
|
default=4e-5, |
|
help="Learning rate to use for text encoder.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--lr_num_cycles", |
|
type=int, |
|
default=1, |
|
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", |
|
) |
|
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") |
|
parser.add_argument( |
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="tensorboard", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--wandb_key", |
|
type=str, |
|
default=None, |
|
help=("If report to option is set to wandb, api-key for wandb used for login to wandb "), |
|
) |
|
parser.add_argument( |
|
"--wandb_project_name", |
|
type=str, |
|
default=None, |
|
help=("If report to option is set to wandb, project name in wandb for log tracking "), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
parser.add_argument( |
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." |
|
) |
|
parser.add_argument( |
|
"--set_grads_to_none", |
|
action="store_true", |
|
help=( |
|
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" |
|
" behaviors, so disable this argument if it causes any problems. More info:" |
|
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" |
|
), |
|
) |
|
parser.add_argument( |
|
"--lora_rank", |
|
type=int, |
|
default=16, |
|
help=("The dimension of the LoRA update matrices."), |
|
) |
|
parser.add_argument( |
|
"--lora_alpha", |
|
type=int, |
|
default=27, |
|
help=("The alpha constant of the LoRA update matrices."), |
|
) |
|
parser.add_argument( |
|
"--lora_dropout", |
|
type=float, |
|
default=0.0, |
|
help="The dropout rate of the LoRA update matrices.", |
|
) |
|
parser.add_argument( |
|
"--lora_bias", |
|
type=str, |
|
default="none", |
|
help="The bias type of the Lora update matrices. Must be 'none', 'all' or 'lora_only'.", |
|
) |
|
|
|
if input_args is not None: |
|
args = parser.parse_args(input_args) |
|
else: |
|
args = parser.parse_args() |
|
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
return args |
|
|
|
|
|
class RealFillDataset(Dataset): |
|
""" |
|
A dataset to prepare the training and conditioning images and |
|
the masks with the dummy prompt for fine-tuning the model. |
|
It pre-processes the images, masks and tokenizes the prompts. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
train_data_root, |
|
tokenizer, |
|
size=512, |
|
): |
|
self.size = size |
|
self.tokenizer = tokenizer |
|
|
|
self.ref_data_root = Path(train_data_root) / "ref" |
|
self.target_image = Path(train_data_root) / "target" / "target.png" |
|
self.target_mask = Path(train_data_root) / "target" / "mask.png" |
|
if not (self.ref_data_root.exists() and self.target_image.exists() and self.target_mask.exists()): |
|
raise ValueError("Train images root doesn't exists.") |
|
|
|
self.train_images_path = list(self.ref_data_root.iterdir()) + [self.target_image] |
|
self.num_train_images = len(self.train_images_path) |
|
self.train_prompt = "a photo of sks" |
|
|
|
self.transform = transforms_v2.Compose( |
|
[ |
|
transforms_v2.ToImage(), |
|
transforms_v2.RandomResize(size, int(1.125 * size)), |
|
transforms_v2.RandomCrop(size), |
|
transforms_v2.ToDtype(torch.float32, scale=True), |
|
transforms_v2.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
def __len__(self): |
|
return self.num_train_images |
|
|
|
def __getitem__(self, index): |
|
example = {} |
|
|
|
image = Image.open(self.train_images_path[index]) |
|
image = exif_transpose(image) |
|
|
|
if not image.mode == "RGB": |
|
image = image.convert("RGB") |
|
|
|
if index < len(self) - 1: |
|
weighting = Image.new("L", image.size) |
|
else: |
|
weighting = Image.open(self.target_mask) |
|
weighting = exif_transpose(weighting) |
|
|
|
image, weighting = self.transform(image, weighting) |
|
example["images"], example["weightings"] = image, weighting < 0 |
|
|
|
if random.random() < 0.1: |
|
example["masks"] = torch.ones_like(example["images"][0:1, :, :]) |
|
else: |
|
example["masks"] = make_mask(example["images"], self.size) |
|
|
|
example["conditioning_images"] = example["images"] * (example["masks"] < 0.5) |
|
|
|
train_prompt = "" if random.random() < 0.1 else self.train_prompt |
|
example["prompt_ids"] = self.tokenizer( |
|
train_prompt, |
|
truncation=True, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
return_tensors="pt", |
|
).input_ids |
|
|
|
return example |
|
|
|
|
|
def collate_fn(examples): |
|
input_ids = [example["prompt_ids"] for example in examples] |
|
images = [example["images"] for example in examples] |
|
|
|
masks = [example["masks"] for example in examples] |
|
weightings = [example["weightings"] for example in examples] |
|
conditioning_images = [example["conditioning_images"] for example in examples] |
|
|
|
images = torch.stack(images) |
|
images = images.to(memory_format=torch.contiguous_format).float() |
|
|
|
masks = torch.stack(masks) |
|
masks = masks.to(memory_format=torch.contiguous_format).float() |
|
|
|
weightings = torch.stack(weightings) |
|
weightings = weightings.to(memory_format=torch.contiguous_format).float() |
|
|
|
conditioning_images = torch.stack(conditioning_images) |
|
conditioning_images = conditioning_images.to(memory_format=torch.contiguous_format).float() |
|
|
|
input_ids = torch.cat(input_ids, dim=0) |
|
|
|
batch = { |
|
"input_ids": input_ids, |
|
"images": images, |
|
"masks": masks, |
|
"weightings": weightings, |
|
"conditioning_images": conditioning_images, |
|
} |
|
return batch |
|
|
|
|
|
def main(args): |
|
if args.report_to == "wandb" and args.hub_token is not None: |
|
raise ValueError( |
|
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." |
|
" Please use `huggingface-cli login` to authenticate with the Hub." |
|
) |
|
|
|
logging_dir = Path(args.output_dir, args.logging_dir) |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.report_to, |
|
project_dir=logging_dir, |
|
) |
|
|
|
if args.report_to == "wandb": |
|
if not is_wandb_available(): |
|
raise ImportError("Make sure to install wandb if you want to use it for logging during training.") |
|
|
|
wandb.login(key=args.wandb_key) |
|
wandb.init(project=args.wandb_project_name) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
transformers.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
transformers.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
if args.push_to_hub: |
|
repo_id = create_repo( |
|
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token |
|
).repo_id |
|
|
|
|
|
if args.tokenizer_name: |
|
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False) |
|
elif args.pretrained_model_name_or_path: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="tokenizer", |
|
revision=args.revision, |
|
use_fast=False, |
|
) |
|
|
|
|
|
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") |
|
text_encoder = CLIPTextModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision |
|
) |
|
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision) |
|
unet = UNet2DConditionModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision |
|
) |
|
|
|
config = LoraConfig( |
|
r=args.lora_rank, |
|
lora_alpha=args.lora_alpha, |
|
target_modules=["to_k", "to_q", "to_v", "key", "query", "value"], |
|
lora_dropout=args.lora_dropout, |
|
bias=args.lora_bias, |
|
) |
|
unet = get_peft_model(unet, config) |
|
|
|
config = LoraConfig( |
|
r=args.lora_rank, |
|
lora_alpha=args.lora_alpha, |
|
target_modules=["k_proj", "q_proj", "v_proj"], |
|
lora_dropout=args.lora_dropout, |
|
bias=args.lora_bias, |
|
) |
|
text_encoder = get_peft_model(text_encoder, config) |
|
|
|
vae.requires_grad_(False) |
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
if is_xformers_available(): |
|
import xformers |
|
|
|
xformers_version = version.parse(xformers.__version__) |
|
if xformers_version == version.parse("0.0.16"): |
|
logger.warning( |
|
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." |
|
) |
|
unet.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
if args.gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
text_encoder.gradient_checkpointing_enable() |
|
|
|
|
|
def save_model_hook(models, weights, output_dir): |
|
if accelerator.is_main_process: |
|
for model in models: |
|
sub_dir = ( |
|
"unet" |
|
if isinstance(model.base_model.model, type(accelerator.unwrap_model(unet).base_model.model)) |
|
else "text_encoder" |
|
) |
|
model.save_pretrained(os.path.join(output_dir, sub_dir)) |
|
|
|
|
|
weights.pop() |
|
|
|
def load_model_hook(models, input_dir): |
|
while len(models) > 0: |
|
|
|
model = models.pop() |
|
|
|
sub_dir = ( |
|
"unet" |
|
if isinstance(model.base_model.model, type(accelerator.unwrap_model(unet).base_model.model)) |
|
else "text_encoder" |
|
) |
|
model_cls = ( |
|
UNet2DConditionModel |
|
if isinstance(model.base_model.model, type(accelerator.unwrap_model(unet).base_model.model)) |
|
else CLIPTextModel |
|
) |
|
|
|
load_model = model_cls.from_pretrained(args.pretrained_model_name_or_path, subfolder=sub_dir) |
|
load_model = PeftModel.from_pretrained(load_model, input_dir, subfolder=sub_dir) |
|
|
|
model.load_state_dict(load_model.state_dict()) |
|
del load_model |
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook) |
|
accelerator.register_load_state_pre_hook(load_model_hook) |
|
|
|
|
|
|
|
if args.allow_tf32: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
if args.scale_lr: |
|
args.unet_learning_rate = ( |
|
args.unet_learning_rate |
|
* args.gradient_accumulation_steps |
|
* args.train_batch_size |
|
* accelerator.num_processes |
|
) |
|
|
|
args.text_encoder_learning_rate = ( |
|
args.text_encoder_learning_rate |
|
* args.gradient_accumulation_steps |
|
* args.train_batch_size |
|
* accelerator.num_processes |
|
) |
|
|
|
|
|
if args.use_8bit_adam: |
|
try: |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError( |
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." |
|
) |
|
|
|
optimizer_class = bnb.optim.AdamW8bit |
|
else: |
|
optimizer_class = torch.optim.AdamW |
|
|
|
|
|
optimizer = optimizer_class( |
|
[ |
|
{"params": unet.parameters(), "lr": args.unet_learning_rate}, |
|
{"params": text_encoder.parameters(), "lr": args.text_encoder_learning_rate}, |
|
], |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
|
|
train_dataset = RealFillDataset( |
|
train_data_root=args.train_data_dir, |
|
tokenizer=tokenizer, |
|
size=args.resolution, |
|
) |
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, |
|
batch_size=args.train_batch_size, |
|
shuffle=True, |
|
collate_fn=collate_fn, |
|
num_workers=1, |
|
) |
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, |
|
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, |
|
num_cycles=args.lr_num_cycles, |
|
power=args.lr_power, |
|
) |
|
|
|
|
|
unet, text_encoder, optimizer, train_dataloader = accelerator.prepare( |
|
unet, text_encoder, optimizer, train_dataloader |
|
) |
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
|
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
tracker_config = vars(copy.deepcopy(args)) |
|
accelerator.init_trackers("realfill", config=tracker_config) |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num batches each epoch = {len(train_dataloader)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
global_step = 0 |
|
first_epoch = 0 |
|
|
|
|
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint != "latest": |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
if path is None: |
|
accelerator.print( |
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
) |
|
args.resume_from_checkpoint = None |
|
initial_global_step = 0 |
|
else: |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
global_step = int(path.split("-")[1]) |
|
|
|
initial_global_step = global_step |
|
first_epoch = global_step // num_update_steps_per_epoch |
|
else: |
|
initial_global_step = 0 |
|
|
|
progress_bar = tqdm( |
|
range(0, args.max_train_steps), |
|
initial=initial_global_step, |
|
desc="Steps", |
|
|
|
disable=not accelerator.is_local_main_process, |
|
) |
|
|
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
unet.train() |
|
text_encoder.train() |
|
|
|
for step, batch in enumerate(train_dataloader): |
|
with accelerator.accumulate(unet, text_encoder): |
|
|
|
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample() |
|
latents = latents * 0.18215 |
|
|
|
|
|
conditionings = vae.encode(batch["conditioning_images"].to(dtype=weight_dtype)).latent_dist.sample() |
|
conditionings = conditionings * 0.18215 |
|
|
|
|
|
masks, size = batch["masks"].to(dtype=weight_dtype), latents.shape[2:] |
|
masks = F.interpolate(masks, size=size) |
|
|
|
weightings = batch["weightings"].to(dtype=weight_dtype) |
|
weightings = F.interpolate(weightings, size=size) |
|
|
|
|
|
noise = torch.randn_like(latents) |
|
bsz = latents.shape[0] |
|
|
|
|
|
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) |
|
timesteps = timesteps.long() |
|
|
|
|
|
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
|
|
|
|
|
inputs = torch.cat([noisy_latents, masks, conditionings], dim=1) |
|
|
|
|
|
encoder_hidden_states = text_encoder(batch["input_ids"])[0] |
|
|
|
|
|
model_pred = unet(inputs, timesteps, encoder_hidden_states).sample |
|
|
|
|
|
assert noise_scheduler.config.prediction_type == "epsilon" |
|
loss = (weightings * F.mse_loss(model_pred.float(), noise.float(), reduction="none")).mean() |
|
|
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients: |
|
params_to_clip = itertools.chain(unet.parameters(), text_encoder.parameters()) |
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) |
|
|
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad(set_to_none=args.set_grads_to_none) |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
if args.report_to == "wandb": |
|
accelerator.print(progress_bar) |
|
global_step += 1 |
|
|
|
if accelerator.is_main_process: |
|
if global_step % args.checkpointing_steps == 0: |
|
|
|
if args.checkpoints_total_limit is not None: |
|
checkpoints = os.listdir(args.output_dir) |
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] |
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) |
|
|
|
|
|
if len(checkpoints) >= args.checkpoints_total_limit: |
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 |
|
removing_checkpoints = checkpoints[0:num_to_remove] |
|
|
|
logger.info( |
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" |
|
) |
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") |
|
|
|
for removing_checkpoint in removing_checkpoints: |
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) |
|
shutil.rmtree(removing_checkpoint) |
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
accelerator.save_state(save_path) |
|
logger.info(f"Saved state to {save_path}") |
|
|
|
if global_step % args.validation_steps == 0: |
|
log_validation( |
|
text_encoder, |
|
tokenizer, |
|
unet, |
|
args, |
|
accelerator, |
|
weight_dtype, |
|
global_step, |
|
) |
|
|
|
logs = {"loss": loss.detach().item()} |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
pipeline = StableDiffusionInpaintPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
unet=accelerator.unwrap_model(unet, keep_fp32_wrapper=True).merge_and_unload(), |
|
text_encoder=accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True).merge_and_unload(), |
|
revision=args.revision, |
|
) |
|
|
|
pipeline.save_pretrained(args.output_dir) |
|
|
|
|
|
images = log_validation( |
|
text_encoder, |
|
tokenizer, |
|
unet, |
|
args, |
|
accelerator, |
|
weight_dtype, |
|
global_step, |
|
) |
|
|
|
if args.push_to_hub: |
|
save_model_card( |
|
repo_id, |
|
images=images, |
|
base_model=args.pretrained_model_name_or_path, |
|
repo_folder=args.output_dir, |
|
) |
|
upload_folder( |
|
repo_id=repo_id, |
|
folder_path=args.output_dir, |
|
commit_message="End of training", |
|
ignore_patterns=["step_*", "epoch_*"], |
|
) |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
main(args) |
|
|