|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import sys |
|
import tempfile |
|
|
|
|
|
sys.path.append("..") |
|
from test_examples_utils import ExamplesTestsAccelerate, run_command |
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
|
|
logger = logging.getLogger() |
|
stream_handler = logging.StreamHandler(sys.stdout) |
|
logger.addHandler(stream_handler) |
|
|
|
|
|
class T2IAdapter(ExamplesTestsAccelerate): |
|
def test_t2i_adapter_sdxl(self): |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
test_args = f""" |
|
examples/t2i_adapter/train_t2i_adapter_sdxl.py |
|
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-xl-pipe |
|
--adapter_model_name_or_path=hf-internal-testing/tiny-adapter |
|
--dataset_name=hf-internal-testing/fill10 |
|
--output_dir={tmpdir} |
|
--resolution=64 |
|
--train_batch_size=1 |
|
--gradient_accumulation_steps=1 |
|
--max_train_steps=9 |
|
--checkpointing_steps=2 |
|
""".split() |
|
|
|
run_command(self._launch_args + test_args) |
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "diffusion_pytorch_model.safetensors"))) |
|
|