|
import argparse |
|
|
|
import torch |
|
from safetensors.torch import load_file, save_file |
|
|
|
|
|
def convert_motion_module(original_state_dict): |
|
converted_state_dict = {} |
|
for k, v in original_state_dict.items(): |
|
if "pos_encoder" in k: |
|
continue |
|
|
|
else: |
|
converted_state_dict[ |
|
k.replace(".norms.0", ".norm1") |
|
.replace(".norms.1", ".norm2") |
|
.replace(".ff_norm", ".norm3") |
|
.replace(".attention_blocks.0", ".attn1") |
|
.replace(".attention_blocks.1", ".attn2") |
|
.replace(".temporal_transformer", "") |
|
] = v |
|
|
|
return converted_state_dict |
|
|
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--ckpt_path", type=str, required=True) |
|
parser.add_argument("--output_path", type=str, required=True) |
|
|
|
return parser.parse_args() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = get_args() |
|
|
|
if args.ckpt_path.endswith(".safetensors"): |
|
state_dict = load_file(args.ckpt_path) |
|
else: |
|
state_dict = torch.load(args.ckpt_path, map_location="cpu") |
|
|
|
if "state_dict" in state_dict.keys(): |
|
state_dict = state_dict["state_dict"] |
|
|
|
conv_state_dict = convert_motion_module(state_dict) |
|
|
|
|
|
output_dict = {} |
|
for module_name, params in conv_state_dict.items(): |
|
if type(params) is not torch.Tensor: |
|
continue |
|
output_dict.update({f"unet.{module_name}": params}) |
|
|
|
save_file(output_dict, f"{args.output_path}/diffusion_pytorch_model.safetensors") |
|
|