diffusers-sdxl-controlnet / tests /schedulers /test_scheduler_edm_euler.py
svjack's picture
Upload 1392 files
43b7e92 verified
raw
history blame
8.39 kB
import inspect
import tempfile
import unittest
from typing import Dict, List, Tuple
import torch
from diffusers import EDMEulerScheduler
from .test_schedulers import SchedulerCommonTest
class EDMEulerSchedulerTest(SchedulerCommonTest):
scheduler_classes = (EDMEulerScheduler,)
forward_default_kwargs = (("num_inference_steps", 10),)
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 256,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
config.update(**kwargs)
return config
def test_timesteps(self):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_prediction_type(self):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=prediction_type)
def test_full_loop_no_noise(self, num_inference_steps=10, seed=0):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(scheduler.timesteps):
scaled_sample = scheduler.scale_model_input(sample, t)
model_output = model(scaled_sample, t)
output = scheduler.step(model_output, t, sample)
sample = output.prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 34.1855) < 1e-3
assert abs(result_mean.item() - 0.044) < 1e-3
def test_full_loop_device(self, num_inference_steps=10, seed=0):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
model = self.dummy_model()
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(scheduler.timesteps):
scaled_sample = scheduler.scale_model_input(sample, t)
model_output = model(scaled_sample, t)
output = scheduler.step(model_output, t, sample)
sample = output.prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 34.1855) < 1e-3
assert abs(result_mean.item() - 0.044) < 1e-3
# Override test_from_save_pretrined to use EDMEulerScheduler-specific logic
def test_from_save_pretrained(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
sample = self.dummy_sample
residual = 0.1 * sample
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
scheduler.set_timesteps(num_inference_steps)
new_scheduler.set_timesteps(num_inference_steps)
timestep = scheduler.timesteps[0]
sample = self.dummy_sample
scaled_sample = scheduler.scale_model_input(sample, timestep)
residual = 0.1 * scaled_sample
new_scaled_sample = new_scheduler.scale_model_input(sample, timestep)
new_residual = 0.1 * new_scaled_sample
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.manual_seed(0)
output = scheduler.step(residual, timestep, sample, **kwargs).prev_sample
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.manual_seed(0)
new_output = new_scheduler.step(new_residual, timestep, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
# Override test_from_save_pretrined to use EDMEulerScheduler-specific logic
def test_step_shape(self):
num_inference_steps = 10
scheduler_config = self.get_scheduler_config()
scheduler = self.scheduler_classes[0](**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
timestep_0 = scheduler.timesteps[0]
timestep_1 = scheduler.timesteps[1]
sample = self.dummy_sample
scaled_sample = scheduler.scale_model_input(sample, timestep_0)
residual = 0.1 * scaled_sample
output_0 = scheduler.step(residual, timestep_0, sample).prev_sample
output_1 = scheduler.step(residual, timestep_1, sample).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
# Override test_from_save_pretrained to use EDMEulerScheduler-specific logic
def test_scheduler_outputs_equivalence(self):
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", 50)
timestep = 0
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
timestep = scheduler.timesteps[0]
sample = self.dummy_sample
scaled_sample = scheduler.scale_model_input(sample, timestep)
residual = 0.1 * scaled_sample
# Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.manual_seed(0)
outputs_dict = scheduler.step(residual, timestep, sample, **kwargs)
scheduler.set_timesteps(num_inference_steps)
scaled_sample = scheduler.scale_model_input(sample, timestep)
residual = 0.1 * scaled_sample
# Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
kwargs["generator"] = torch.manual_seed(0)
outputs_tuple = scheduler.step(residual, timestep, sample, return_dict=False, **kwargs)
recursive_check(outputs_tuple, outputs_dict)
@unittest.skip(reason="EDMEulerScheduler does not support beta schedules.")
def test_trained_betas(self):
pass