|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import inspect |
|
import os |
|
from pathlib import Path |
|
from typing import Callable, Dict, List, Optional, Union |
|
|
|
import safetensors |
|
import torch |
|
from huggingface_hub import model_info |
|
from huggingface_hub.constants import HF_HUB_OFFLINE |
|
from huggingface_hub.utils import validate_hf_hub_args |
|
from torch import nn |
|
|
|
from ..models.modeling_utils import load_state_dict |
|
from ..utils import ( |
|
USE_PEFT_BACKEND, |
|
_get_model_file, |
|
convert_state_dict_to_diffusers, |
|
convert_state_dict_to_peft, |
|
convert_unet_state_dict_to_peft, |
|
delete_adapter_layers, |
|
get_adapter_name, |
|
get_peft_kwargs, |
|
is_accelerate_available, |
|
is_peft_version, |
|
is_transformers_available, |
|
logging, |
|
recurse_remove_peft_layers, |
|
scale_lora_layers, |
|
set_adapter_layers, |
|
set_weights_and_activate_adapters, |
|
) |
|
from .lora_conversion_utils import _convert_non_diffusers_lora_to_diffusers, _maybe_map_sgm_blocks_to_diffusers |
|
|
|
|
|
if is_transformers_available(): |
|
from transformers import PreTrainedModel |
|
|
|
from ..models.lora import text_encoder_attn_modules, text_encoder_mlp_modules |
|
|
|
if is_accelerate_available(): |
|
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
TEXT_ENCODER_NAME = "text_encoder" |
|
UNET_NAME = "unet" |
|
TRANSFORMER_NAME = "transformer" |
|
|
|
LORA_WEIGHT_NAME = "pytorch_lora_weights.bin" |
|
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors" |
|
|
|
LORA_DEPRECATION_MESSAGE = "You are using an old version of LoRA backend. This will be deprecated in the next releases in favor of PEFT make sure to install the latest PEFT and transformers packages in the future." |
|
|
|
|
|
class LoraLoaderMixin: |
|
r""" |
|
Load LoRA layers into [`UNet2DConditionModel`] and |
|
[`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel). |
|
""" |
|
|
|
text_encoder_name = TEXT_ENCODER_NAME |
|
unet_name = UNET_NAME |
|
transformer_name = TRANSFORMER_NAME |
|
num_fused_loras = 0 |
|
|
|
def load_lora_weights( |
|
self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs |
|
): |
|
""" |
|
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and |
|
`self.text_encoder`. |
|
|
|
All kwargs are forwarded to `self.lora_state_dict`. |
|
|
|
See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. |
|
|
|
See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into |
|
`self.unet`. |
|
|
|
See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded |
|
into `self.text_encoder`. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): |
|
See [`~loaders.LoraLoaderMixin.lora_state_dict`]. |
|
kwargs (`dict`, *optional*): |
|
See [`~loaders.LoraLoaderMixin.lora_state_dict`]. |
|
adapter_name (`str`, *optional*): |
|
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use |
|
`default_{i}` where i is the total number of adapters being loaded. |
|
""" |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError("PEFT backend is required for this method.") |
|
|
|
|
|
if isinstance(pretrained_model_name_or_path_or_dict, dict): |
|
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() |
|
|
|
|
|
state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) |
|
|
|
is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys()) |
|
if not is_correct_format: |
|
raise ValueError("Invalid LoRA checkpoint.") |
|
|
|
self.load_lora_into_unet( |
|
state_dict, |
|
network_alphas=network_alphas, |
|
unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet, |
|
adapter_name=adapter_name, |
|
_pipeline=self, |
|
) |
|
self.load_lora_into_text_encoder( |
|
state_dict, |
|
network_alphas=network_alphas, |
|
text_encoder=getattr(self, self.text_encoder_name) |
|
if not hasattr(self, "text_encoder") |
|
else self.text_encoder, |
|
lora_scale=self.lora_scale, |
|
adapter_name=adapter_name, |
|
_pipeline=self, |
|
) |
|
|
|
@classmethod |
|
@validate_hf_hub_args |
|
def lora_state_dict( |
|
cls, |
|
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], |
|
**kwargs, |
|
): |
|
r""" |
|
Return state dict for lora weights and the network alphas. |
|
|
|
<Tip warning={true}> |
|
|
|
We support loading A1111 formatted LoRA checkpoints in a limited capacity. |
|
|
|
This function is experimental and might change in the future. |
|
|
|
</Tip> |
|
|
|
Parameters: |
|
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): |
|
Can be either: |
|
|
|
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on |
|
the Hub. |
|
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved |
|
with [`ModelMixin.save_pretrained`]. |
|
- A [torch state |
|
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). |
|
|
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache |
|
is not used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download: |
|
Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1 |
|
of Diffusers. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
Whether to only load local model weights and configuration files or not. If set to `True`, the model |
|
won't be downloaded from the Hub. |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from |
|
`diffusers-cli login` (stored in `~/.huggingface`) is used. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier |
|
allowed by Git. |
|
subfolder (`str`, *optional*, defaults to `""`): |
|
The subfolder location of a model file within a larger model repository on the Hub or locally. |
|
weight_name (`str`, *optional*, defaults to None): |
|
Name of the serialized state dict file. |
|
""" |
|
|
|
|
|
cache_dir = kwargs.pop("cache_dir", None) |
|
force_download = kwargs.pop("force_download", False) |
|
resume_download = kwargs.pop("resume_download", None) |
|
proxies = kwargs.pop("proxies", None) |
|
local_files_only = kwargs.pop("local_files_only", None) |
|
token = kwargs.pop("token", None) |
|
revision = kwargs.pop("revision", None) |
|
subfolder = kwargs.pop("subfolder", None) |
|
weight_name = kwargs.pop("weight_name", None) |
|
unet_config = kwargs.pop("unet_config", None) |
|
use_safetensors = kwargs.pop("use_safetensors", None) |
|
|
|
allow_pickle = False |
|
if use_safetensors is None: |
|
use_safetensors = True |
|
allow_pickle = True |
|
|
|
user_agent = { |
|
"file_type": "attn_procs_weights", |
|
"framework": "pytorch", |
|
} |
|
|
|
model_file = None |
|
if not isinstance(pretrained_model_name_or_path_or_dict, dict): |
|
|
|
if (use_safetensors and weight_name is None) or ( |
|
weight_name is not None and weight_name.endswith(".safetensors") |
|
): |
|
try: |
|
|
|
|
|
|
|
if weight_name is None: |
|
weight_name = cls._best_guess_weight_name( |
|
pretrained_model_name_or_path_or_dict, |
|
file_extension=".safetensors", |
|
local_files_only=local_files_only, |
|
) |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path_or_dict, |
|
weights_name=weight_name or LORA_WEIGHT_NAME_SAFE, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
) |
|
state_dict = safetensors.torch.load_file(model_file, device="cpu") |
|
except (IOError, safetensors.SafetensorError) as e: |
|
if not allow_pickle: |
|
raise e |
|
|
|
model_file = None |
|
pass |
|
|
|
if model_file is None: |
|
if weight_name is None: |
|
weight_name = cls._best_guess_weight_name( |
|
pretrained_model_name_or_path_or_dict, file_extension=".bin", local_files_only=local_files_only |
|
) |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path_or_dict, |
|
weights_name=weight_name or LORA_WEIGHT_NAME, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
) |
|
state_dict = load_state_dict(model_file) |
|
else: |
|
state_dict = pretrained_model_name_or_path_or_dict |
|
|
|
network_alphas = None |
|
|
|
if all( |
|
( |
|
k.startswith("lora_te_") |
|
or k.startswith("lora_unet_") |
|
or k.startswith("lora_te1_") |
|
or k.startswith("lora_te2_") |
|
) |
|
for k in state_dict.keys() |
|
): |
|
|
|
if unet_config is not None: |
|
|
|
state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config) |
|
state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict) |
|
|
|
return state_dict, network_alphas |
|
|
|
@classmethod |
|
def _best_guess_weight_name( |
|
cls, pretrained_model_name_or_path_or_dict, file_extension=".safetensors", local_files_only=False |
|
): |
|
if local_files_only or HF_HUB_OFFLINE: |
|
raise ValueError("When using the offline mode, you must specify a `weight_name`.") |
|
|
|
targeted_files = [] |
|
|
|
if os.path.isfile(pretrained_model_name_or_path_or_dict): |
|
return |
|
elif os.path.isdir(pretrained_model_name_or_path_or_dict): |
|
targeted_files = [ |
|
f for f in os.listdir(pretrained_model_name_or_path_or_dict) if f.endswith(file_extension) |
|
] |
|
else: |
|
files_in_repo = model_info(pretrained_model_name_or_path_or_dict).siblings |
|
targeted_files = [f.rfilename for f in files_in_repo if f.rfilename.endswith(file_extension)] |
|
if len(targeted_files) == 0: |
|
return |
|
|
|
|
|
|
|
|
|
unallowed_substrings = {"scheduler", "optimizer", "checkpoint"} |
|
targeted_files = list( |
|
filter(lambda x: all(substring not in x for substring in unallowed_substrings), targeted_files) |
|
) |
|
|
|
if any(f.endswith(LORA_WEIGHT_NAME) for f in targeted_files): |
|
targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME), targeted_files)) |
|
elif any(f.endswith(LORA_WEIGHT_NAME_SAFE) for f in targeted_files): |
|
targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME_SAFE), targeted_files)) |
|
|
|
if len(targeted_files) > 1: |
|
raise ValueError( |
|
f"Provided path contains more than one weights file in the {file_extension} format. Either specify `weight_name` in `load_lora_weights` or make sure there's only one `.safetensors` or `.bin` file in {pretrained_model_name_or_path_or_dict}." |
|
) |
|
weight_name = targeted_files[0] |
|
return weight_name |
|
|
|
@classmethod |
|
def _optionally_disable_offloading(cls, _pipeline): |
|
""" |
|
Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU. |
|
|
|
Args: |
|
_pipeline (`DiffusionPipeline`): |
|
The pipeline to disable offloading for. |
|
|
|
Returns: |
|
tuple: |
|
A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True. |
|
""" |
|
is_model_cpu_offload = False |
|
is_sequential_cpu_offload = False |
|
|
|
if _pipeline is not None and _pipeline.hf_device_map is None: |
|
for _, component in _pipeline.components.items(): |
|
if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"): |
|
if not is_model_cpu_offload: |
|
is_model_cpu_offload = isinstance(component._hf_hook, CpuOffload) |
|
if not is_sequential_cpu_offload: |
|
is_sequential_cpu_offload = ( |
|
isinstance(component._hf_hook, AlignDevicesHook) |
|
or hasattr(component._hf_hook, "hooks") |
|
and isinstance(component._hf_hook.hooks[0], AlignDevicesHook) |
|
) |
|
|
|
logger.info( |
|
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again." |
|
) |
|
remove_hook_from_module(component, recurse=is_sequential_cpu_offload) |
|
|
|
return (is_model_cpu_offload, is_sequential_cpu_offload) |
|
|
|
@classmethod |
|
def load_lora_into_unet(cls, state_dict, network_alphas, unet, adapter_name=None, _pipeline=None): |
|
""" |
|
This will load the LoRA layers specified in `state_dict` into `unet`. |
|
|
|
Parameters: |
|
state_dict (`dict`): |
|
A standard state dict containing the lora layer parameters. The keys can either be indexed directly |
|
into the unet or prefixed with an additional `unet` which can be used to distinguish between text |
|
encoder lora layers. |
|
network_alphas (`Dict[str, float]`): |
|
The value of the network alpha used for stable learning and preventing underflow. This value has the |
|
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this |
|
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). |
|
unet (`UNet2DConditionModel`): |
|
The UNet model to load the LoRA layers into. |
|
adapter_name (`str`, *optional*): |
|
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use |
|
`default_{i}` where i is the total number of adapters being loaded. |
|
""" |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError("PEFT backend is required for this method.") |
|
|
|
|
|
|
|
|
|
keys = list(state_dict.keys()) |
|
only_text_encoder = all(key.startswith(cls.text_encoder_name) for key in keys) |
|
|
|
if any(key.startswith(cls.unet_name) for key in keys) and not only_text_encoder: |
|
|
|
logger.info(f"Loading {cls.unet_name}.") |
|
unet.load_attn_procs( |
|
state_dict, network_alphas=network_alphas, adapter_name=adapter_name, _pipeline=_pipeline |
|
) |
|
|
|
@classmethod |
|
def load_lora_into_text_encoder( |
|
cls, |
|
state_dict, |
|
network_alphas, |
|
text_encoder, |
|
prefix=None, |
|
lora_scale=1.0, |
|
adapter_name=None, |
|
_pipeline=None, |
|
): |
|
""" |
|
This will load the LoRA layers specified in `state_dict` into `text_encoder` |
|
|
|
Parameters: |
|
state_dict (`dict`): |
|
A standard state dict containing the lora layer parameters. The key should be prefixed with an |
|
additional `text_encoder` to distinguish between unet lora layers. |
|
network_alphas (`Dict[str, float]`): |
|
See `LoRALinearLayer` for more details. |
|
text_encoder (`CLIPTextModel`): |
|
The text encoder model to load the LoRA layers into. |
|
prefix (`str`): |
|
Expected prefix of the `text_encoder` in the `state_dict`. |
|
lora_scale (`float`): |
|
How much to scale the output of the lora linear layer before it is added with the output of the regular |
|
lora layer. |
|
adapter_name (`str`, *optional*): |
|
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use |
|
`default_{i}` where i is the total number of adapters being loaded. |
|
""" |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError("PEFT backend is required for this method.") |
|
|
|
from peft import LoraConfig |
|
|
|
|
|
|
|
|
|
keys = list(state_dict.keys()) |
|
prefix = cls.text_encoder_name if prefix is None else prefix |
|
|
|
|
|
if any(cls.text_encoder_name in key for key in keys): |
|
|
|
text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix] |
|
text_encoder_lora_state_dict = { |
|
k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys |
|
} |
|
|
|
if len(text_encoder_lora_state_dict) > 0: |
|
logger.info(f"Loading {prefix}.") |
|
rank = {} |
|
text_encoder_lora_state_dict = convert_state_dict_to_diffusers(text_encoder_lora_state_dict) |
|
|
|
|
|
text_encoder_lora_state_dict = convert_state_dict_to_peft(text_encoder_lora_state_dict) |
|
|
|
for name, _ in text_encoder_attn_modules(text_encoder): |
|
for module in ("out_proj", "q_proj", "k_proj", "v_proj"): |
|
rank_key = f"{name}.{module}.lora_B.weight" |
|
if rank_key not in text_encoder_lora_state_dict: |
|
continue |
|
rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] |
|
|
|
for name, _ in text_encoder_mlp_modules(text_encoder): |
|
for module in ("fc1", "fc2"): |
|
rank_key = f"{name}.{module}.lora_B.weight" |
|
if rank_key not in text_encoder_lora_state_dict: |
|
continue |
|
rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1] |
|
|
|
if network_alphas is not None: |
|
alpha_keys = [ |
|
k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix |
|
] |
|
network_alphas = { |
|
k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys |
|
} |
|
|
|
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, text_encoder_lora_state_dict, is_unet=False) |
|
if "use_dora" in lora_config_kwargs: |
|
if lora_config_kwargs["use_dora"]: |
|
if is_peft_version("<", "0.9.0"): |
|
raise ValueError( |
|
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`." |
|
) |
|
else: |
|
if is_peft_version("<", "0.9.0"): |
|
lora_config_kwargs.pop("use_dora") |
|
lora_config = LoraConfig(**lora_config_kwargs) |
|
|
|
|
|
if adapter_name is None: |
|
adapter_name = get_adapter_name(text_encoder) |
|
|
|
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline) |
|
|
|
|
|
|
|
text_encoder.load_adapter( |
|
adapter_name=adapter_name, |
|
adapter_state_dict=text_encoder_lora_state_dict, |
|
peft_config=lora_config, |
|
) |
|
|
|
|
|
scale_lora_layers(text_encoder, weight=lora_scale) |
|
|
|
text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype) |
|
|
|
|
|
if is_model_cpu_offload: |
|
_pipeline.enable_model_cpu_offload() |
|
elif is_sequential_cpu_offload: |
|
_pipeline.enable_sequential_cpu_offload() |
|
|
|
|
|
@classmethod |
|
def load_lora_into_transformer(cls, state_dict, network_alphas, transformer, adapter_name=None, _pipeline=None): |
|
""" |
|
This will load the LoRA layers specified in `state_dict` into `transformer`. |
|
|
|
Parameters: |
|
state_dict (`dict`): |
|
A standard state dict containing the lora layer parameters. The keys can either be indexed directly |
|
into the unet or prefixed with an additional `unet` which can be used to distinguish between text |
|
encoder lora layers. |
|
network_alphas (`Dict[str, float]`): |
|
See `LoRALinearLayer` for more details. |
|
unet (`UNet2DConditionModel`): |
|
The UNet model to load the LoRA layers into. |
|
adapter_name (`str`, *optional*): |
|
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use |
|
`default_{i}` where i is the total number of adapters being loaded. |
|
""" |
|
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict |
|
|
|
keys = list(state_dict.keys()) |
|
|
|
transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)] |
|
state_dict = { |
|
k.replace(f"{cls.transformer_name}.", ""): v for k, v in state_dict.items() if k in transformer_keys |
|
} |
|
|
|
if network_alphas is not None: |
|
alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.transformer_name)] |
|
network_alphas = { |
|
k.replace(f"{cls.transformer_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys |
|
} |
|
|
|
if len(state_dict.keys()) > 0: |
|
if adapter_name in getattr(transformer, "peft_config", {}): |
|
raise ValueError( |
|
f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name." |
|
) |
|
|
|
rank = {} |
|
for key, val in state_dict.items(): |
|
if "lora_B" in key: |
|
rank[key] = val.shape[1] |
|
|
|
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict) |
|
if "use_dora" in lora_config_kwargs: |
|
if lora_config_kwargs["use_dora"] and is_peft_version("<", "0.9.0"): |
|
raise ValueError( |
|
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`." |
|
) |
|
else: |
|
lora_config_kwargs.pop("use_dora") |
|
lora_config = LoraConfig(**lora_config_kwargs) |
|
|
|
|
|
if adapter_name is None: |
|
adapter_name = get_adapter_name(transformer) |
|
|
|
|
|
|
|
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline) |
|
|
|
inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name) |
|
incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name) |
|
|
|
if incompatible_keys is not None: |
|
|
|
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) |
|
if unexpected_keys: |
|
logger.warning( |
|
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " |
|
f" {unexpected_keys}. " |
|
) |
|
|
|
|
|
if is_model_cpu_offload: |
|
_pipeline.enable_model_cpu_offload() |
|
elif is_sequential_cpu_offload: |
|
_pipeline.enable_sequential_cpu_offload() |
|
|
|
|
|
@property |
|
def lora_scale(self) -> float: |
|
|
|
|
|
return self._lora_scale if hasattr(self, "_lora_scale") else 1.0 |
|
|
|
def _remove_text_encoder_monkey_patch(self): |
|
remove_method = recurse_remove_peft_layers |
|
if hasattr(self, "text_encoder"): |
|
remove_method(self.text_encoder) |
|
|
|
if getattr(self.text_encoder, "peft_config", None) is not None: |
|
del self.text_encoder.peft_config |
|
self.text_encoder._hf_peft_config_loaded = None |
|
|
|
if hasattr(self, "text_encoder_2"): |
|
remove_method(self.text_encoder_2) |
|
if getattr(self.text_encoder_2, "peft_config", None) is not None: |
|
del self.text_encoder_2.peft_config |
|
self.text_encoder_2._hf_peft_config_loaded = None |
|
|
|
@classmethod |
|
def save_lora_weights( |
|
cls, |
|
save_directory: Union[str, os.PathLike], |
|
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, |
|
text_encoder_lora_layers: Dict[str, torch.nn.Module] = None, |
|
transformer_lora_layers: Dict[str, torch.nn.Module] = None, |
|
is_main_process: bool = True, |
|
weight_name: str = None, |
|
save_function: Callable = None, |
|
safe_serialization: bool = True, |
|
): |
|
r""" |
|
Save the LoRA parameters corresponding to the UNet and text encoder. |
|
|
|
Arguments: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory to save LoRA parameters to. Will be created if it doesn't exist. |
|
unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): |
|
State dict of the LoRA layers corresponding to the `unet`. |
|
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): |
|
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text |
|
encoder LoRA state dict because it comes from 🤗 Transformers. |
|
is_main_process (`bool`, *optional*, defaults to `True`): |
|
Whether the process calling this is the main process or not. Useful during distributed training and you |
|
need to call this function on all processes. In this case, set `is_main_process=True` only on the main |
|
process to avoid race conditions. |
|
save_function (`Callable`): |
|
The function to use to save the state dictionary. Useful during distributed training when you need to |
|
replace `torch.save` with another method. Can be configured with the environment variable |
|
`DIFFUSERS_SAVE_MODE`. |
|
safe_serialization (`bool`, *optional*, defaults to `True`): |
|
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. |
|
""" |
|
state_dict = {} |
|
|
|
def pack_weights(layers, prefix): |
|
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers |
|
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()} |
|
return layers_state_dict |
|
|
|
if not (unet_lora_layers or text_encoder_lora_layers or transformer_lora_layers): |
|
raise ValueError( |
|
"You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers`, or `transformer_lora_layers`." |
|
) |
|
|
|
if unet_lora_layers: |
|
state_dict.update(pack_weights(unet_lora_layers, cls.unet_name)) |
|
|
|
if text_encoder_lora_layers: |
|
state_dict.update(pack_weights(text_encoder_lora_layers, cls.text_encoder_name)) |
|
|
|
if transformer_lora_layers: |
|
state_dict.update(pack_weights(transformer_lora_layers, "transformer")) |
|
|
|
|
|
cls.write_lora_layers( |
|
state_dict=state_dict, |
|
save_directory=save_directory, |
|
is_main_process=is_main_process, |
|
weight_name=weight_name, |
|
save_function=save_function, |
|
safe_serialization=safe_serialization, |
|
) |
|
|
|
@staticmethod |
|
def write_lora_layers( |
|
state_dict: Dict[str, torch.Tensor], |
|
save_directory: str, |
|
is_main_process: bool, |
|
weight_name: str, |
|
save_function: Callable, |
|
safe_serialization: bool, |
|
): |
|
if os.path.isfile(save_directory): |
|
logger.error(f"Provided path ({save_directory}) should be a directory, not a file") |
|
return |
|
|
|
if save_function is None: |
|
if safe_serialization: |
|
|
|
def save_function(weights, filename): |
|
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"}) |
|
|
|
else: |
|
save_function = torch.save |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
if weight_name is None: |
|
if safe_serialization: |
|
weight_name = LORA_WEIGHT_NAME_SAFE |
|
else: |
|
weight_name = LORA_WEIGHT_NAME |
|
|
|
save_path = Path(save_directory, weight_name).as_posix() |
|
save_function(state_dict, save_path) |
|
logger.info(f"Model weights saved in {save_path}") |
|
|
|
def unload_lora_weights(self): |
|
""" |
|
Unloads the LoRA parameters. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> # Assuming `pipeline` is already loaded with the LoRA parameters. |
|
>>> pipeline.unload_lora_weights() |
|
>>> ... |
|
``` |
|
""" |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError("PEFT backend is required for this method.") |
|
|
|
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet |
|
unet.unload_lora() |
|
|
|
|
|
self._remove_text_encoder_monkey_patch() |
|
|
|
def fuse_lora( |
|
self, |
|
fuse_unet: bool = True, |
|
fuse_text_encoder: bool = True, |
|
lora_scale: float = 1.0, |
|
safe_fusing: bool = False, |
|
adapter_names: Optional[List[str]] = None, |
|
): |
|
r""" |
|
Fuses the LoRA parameters into the original parameters of the corresponding blocks. |
|
|
|
<Tip warning={true}> |
|
|
|
This is an experimental API. |
|
|
|
</Tip> |
|
|
|
Args: |
|
fuse_unet (`bool`, defaults to `True`): Whether to fuse the UNet LoRA parameters. |
|
fuse_text_encoder (`bool`, defaults to `True`): |
|
Whether to fuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the |
|
LoRA parameters then it won't have any effect. |
|
lora_scale (`float`, defaults to 1.0): |
|
Controls how much to influence the outputs with the LoRA parameters. |
|
safe_fusing (`bool`, defaults to `False`): |
|
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. |
|
adapter_names (`List[str]`, *optional*): |
|
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. |
|
|
|
Example: |
|
|
|
```py |
|
from diffusers import DiffusionPipeline |
|
import torch |
|
|
|
pipeline = DiffusionPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 |
|
).to("cuda") |
|
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") |
|
pipeline.fuse_lora(lora_scale=0.7) |
|
``` |
|
""" |
|
from peft.tuners.tuners_utils import BaseTunerLayer |
|
|
|
if fuse_unet or fuse_text_encoder: |
|
self.num_fused_loras += 1 |
|
if self.num_fused_loras > 1: |
|
logger.warning( |
|
"The current API is supported for operating with a single LoRA file. You are trying to load and fuse more than one LoRA which is not well-supported.", |
|
) |
|
|
|
if fuse_unet: |
|
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet |
|
unet.fuse_lora(lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names) |
|
|
|
def fuse_text_encoder_lora(text_encoder, lora_scale=1.0, safe_fusing=False, adapter_names=None): |
|
merge_kwargs = {"safe_merge": safe_fusing} |
|
|
|
for module in text_encoder.modules(): |
|
if isinstance(module, BaseTunerLayer): |
|
if lora_scale != 1.0: |
|
module.scale_layer(lora_scale) |
|
|
|
|
|
|
|
supported_merge_kwargs = list(inspect.signature(module.merge).parameters) |
|
if "adapter_names" in supported_merge_kwargs: |
|
merge_kwargs["adapter_names"] = adapter_names |
|
elif "adapter_names" not in supported_merge_kwargs and adapter_names is not None: |
|
raise ValueError( |
|
"The `adapter_names` argument is not supported with your PEFT version. " |
|
"Please upgrade to the latest version of PEFT. `pip install -U peft`" |
|
) |
|
|
|
module.merge(**merge_kwargs) |
|
|
|
if fuse_text_encoder: |
|
if hasattr(self, "text_encoder"): |
|
fuse_text_encoder_lora(self.text_encoder, lora_scale, safe_fusing, adapter_names=adapter_names) |
|
if hasattr(self, "text_encoder_2"): |
|
fuse_text_encoder_lora(self.text_encoder_2, lora_scale, safe_fusing, adapter_names=adapter_names) |
|
|
|
def unfuse_lora(self, unfuse_unet: bool = True, unfuse_text_encoder: bool = True): |
|
r""" |
|
Reverses the effect of |
|
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.fuse_lora). |
|
|
|
<Tip warning={true}> |
|
|
|
This is an experimental API. |
|
|
|
</Tip> |
|
|
|
Args: |
|
unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. |
|
unfuse_text_encoder (`bool`, defaults to `True`): |
|
Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the |
|
LoRA parameters then it won't have any effect. |
|
""" |
|
from peft.tuners.tuners_utils import BaseTunerLayer |
|
|
|
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet |
|
if unfuse_unet: |
|
for module in unet.modules(): |
|
if isinstance(module, BaseTunerLayer): |
|
module.unmerge() |
|
|
|
def unfuse_text_encoder_lora(text_encoder): |
|
for module in text_encoder.modules(): |
|
if isinstance(module, BaseTunerLayer): |
|
module.unmerge() |
|
|
|
if unfuse_text_encoder: |
|
if hasattr(self, "text_encoder"): |
|
unfuse_text_encoder_lora(self.text_encoder) |
|
if hasattr(self, "text_encoder_2"): |
|
unfuse_text_encoder_lora(self.text_encoder_2) |
|
|
|
self.num_fused_loras -= 1 |
|
|
|
def set_adapters_for_text_encoder( |
|
self, |
|
adapter_names: Union[List[str], str], |
|
text_encoder: Optional["PreTrainedModel"] = None, |
|
text_encoder_weights: Optional[Union[float, List[float], List[None]]] = None, |
|
): |
|
""" |
|
Sets the adapter layers for the text encoder. |
|
|
|
Args: |
|
adapter_names (`List[str]` or `str`): |
|
The names of the adapters to use. |
|
text_encoder (`torch.nn.Module`, *optional*): |
|
The text encoder module to set the adapter layers for. If `None`, it will try to get the `text_encoder` |
|
attribute. |
|
text_encoder_weights (`List[float]`, *optional*): |
|
The weights to use for the text encoder. If `None`, the weights are set to `1.0` for all the adapters. |
|
""" |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError("PEFT backend is required for this method.") |
|
|
|
def process_weights(adapter_names, weights): |
|
|
|
|
|
if not isinstance(weights, list): |
|
weights = [weights] * len(adapter_names) |
|
|
|
if len(adapter_names) != len(weights): |
|
raise ValueError( |
|
f"Length of adapter names {len(adapter_names)} is not equal to the length of the weights {len(weights)}" |
|
) |
|
|
|
|
|
|
|
weights = [w if w is not None else 1.0 for w in weights] |
|
|
|
return weights |
|
|
|
adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names |
|
text_encoder_weights = process_weights(adapter_names, text_encoder_weights) |
|
text_encoder = text_encoder or getattr(self, "text_encoder", None) |
|
if text_encoder is None: |
|
raise ValueError( |
|
"The pipeline does not have a default `pipe.text_encoder` class. Please make sure to pass a `text_encoder` instead." |
|
) |
|
set_weights_and_activate_adapters(text_encoder, adapter_names, text_encoder_weights) |
|
|
|
def disable_lora_for_text_encoder(self, text_encoder: Optional["PreTrainedModel"] = None): |
|
""" |
|
Disables the LoRA layers for the text encoder. |
|
|
|
Args: |
|
text_encoder (`torch.nn.Module`, *optional*): |
|
The text encoder module to disable the LoRA layers for. If `None`, it will try to get the |
|
`text_encoder` attribute. |
|
""" |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError("PEFT backend is required for this method.") |
|
|
|
text_encoder = text_encoder or getattr(self, "text_encoder", None) |
|
if text_encoder is None: |
|
raise ValueError("Text Encoder not found.") |
|
set_adapter_layers(text_encoder, enabled=False) |
|
|
|
def enable_lora_for_text_encoder(self, text_encoder: Optional["PreTrainedModel"] = None): |
|
""" |
|
Enables the LoRA layers for the text encoder. |
|
|
|
Args: |
|
text_encoder (`torch.nn.Module`, *optional*): |
|
The text encoder module to enable the LoRA layers for. If `None`, it will try to get the `text_encoder` |
|
attribute. |
|
""" |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError("PEFT backend is required for this method.") |
|
text_encoder = text_encoder or getattr(self, "text_encoder", None) |
|
if text_encoder is None: |
|
raise ValueError("Text Encoder not found.") |
|
set_adapter_layers(self.text_encoder, enabled=True) |
|
|
|
def set_adapters( |
|
self, |
|
adapter_names: Union[List[str], str], |
|
adapter_weights: Optional[Union[float, Dict, List[float], List[Dict]]] = None, |
|
): |
|
adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names |
|
|
|
adapter_weights = copy.deepcopy(adapter_weights) |
|
|
|
|
|
if not isinstance(adapter_weights, list): |
|
adapter_weights = [adapter_weights] * len(adapter_names) |
|
|
|
if len(adapter_names) != len(adapter_weights): |
|
raise ValueError( |
|
f"Length of adapter names {len(adapter_names)} is not equal to the length of the weights {len(adapter_weights)}" |
|
) |
|
|
|
|
|
unet_lora_weights, text_encoder_lora_weights, text_encoder_2_lora_weights = [], [], [] |
|
|
|
list_adapters = self.get_list_adapters() |
|
all_adapters = { |
|
adapter for adapters in list_adapters.values() for adapter in adapters |
|
} |
|
invert_list_adapters = { |
|
adapter: [part for part, adapters in list_adapters.items() if adapter in adapters] |
|
for adapter in all_adapters |
|
} |
|
|
|
for adapter_name, weights in zip(adapter_names, adapter_weights): |
|
if isinstance(weights, dict): |
|
unet_lora_weight = weights.pop("unet", None) |
|
text_encoder_lora_weight = weights.pop("text_encoder", None) |
|
text_encoder_2_lora_weight = weights.pop("text_encoder_2", None) |
|
|
|
if len(weights) > 0: |
|
raise ValueError( |
|
f"Got invalid key '{weights.keys()}' in lora weight dict for adapter {adapter_name}." |
|
) |
|
|
|
if text_encoder_2_lora_weight is not None and not hasattr(self, "text_encoder_2"): |
|
logger.warning( |
|
"Lora weight dict contains text_encoder_2 weights but will be ignored because pipeline does not have text_encoder_2." |
|
) |
|
|
|
|
|
for part_weight, part_name in zip( |
|
[unet_lora_weight, text_encoder_lora_weight, text_encoder_2_lora_weight], |
|
["unet", "text_encoder", "text_encoder_2"], |
|
): |
|
if part_weight is not None and part_name not in invert_list_adapters[adapter_name]: |
|
logger.warning( |
|
f"Lora weight dict for adapter '{adapter_name}' contains {part_name}, but this will be ignored because {adapter_name} does not contain weights for {part_name}. Valid parts for {adapter_name} are: {invert_list_adapters[adapter_name]}." |
|
) |
|
|
|
else: |
|
unet_lora_weight = weights |
|
text_encoder_lora_weight = weights |
|
text_encoder_2_lora_weight = weights |
|
|
|
unet_lora_weights.append(unet_lora_weight) |
|
text_encoder_lora_weights.append(text_encoder_lora_weight) |
|
text_encoder_2_lora_weights.append(text_encoder_2_lora_weight) |
|
|
|
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet |
|
|
|
unet.set_adapters(adapter_names, unet_lora_weights) |
|
|
|
|
|
if hasattr(self, "text_encoder"): |
|
self.set_adapters_for_text_encoder(adapter_names, self.text_encoder, text_encoder_lora_weights) |
|
if hasattr(self, "text_encoder_2"): |
|
self.set_adapters_for_text_encoder(adapter_names, self.text_encoder_2, text_encoder_2_lora_weights) |
|
|
|
def disable_lora(self): |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError("PEFT backend is required for this method.") |
|
|
|
|
|
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet |
|
unet.disable_lora() |
|
|
|
|
|
if hasattr(self, "text_encoder"): |
|
self.disable_lora_for_text_encoder(self.text_encoder) |
|
if hasattr(self, "text_encoder_2"): |
|
self.disable_lora_for_text_encoder(self.text_encoder_2) |
|
|
|
def enable_lora(self): |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError("PEFT backend is required for this method.") |
|
|
|
|
|
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet |
|
unet.enable_lora() |
|
|
|
|
|
if hasattr(self, "text_encoder"): |
|
self.enable_lora_for_text_encoder(self.text_encoder) |
|
if hasattr(self, "text_encoder_2"): |
|
self.enable_lora_for_text_encoder(self.text_encoder_2) |
|
|
|
def delete_adapters(self, adapter_names: Union[List[str], str]): |
|
""" |
|
Args: |
|
Deletes the LoRA layers of `adapter_name` for the unet and text-encoder(s). |
|
adapter_names (`Union[List[str], str]`): |
|
The names of the adapter to delete. Can be a single string or a list of strings |
|
""" |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError("PEFT backend is required for this method.") |
|
|
|
if isinstance(adapter_names, str): |
|
adapter_names = [adapter_names] |
|
|
|
|
|
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet |
|
unet.delete_adapters(adapter_names) |
|
|
|
for adapter_name in adapter_names: |
|
|
|
if hasattr(self, "text_encoder"): |
|
delete_adapter_layers(self.text_encoder, adapter_name) |
|
if hasattr(self, "text_encoder_2"): |
|
delete_adapter_layers(self.text_encoder_2, adapter_name) |
|
|
|
def get_active_adapters(self) -> List[str]: |
|
""" |
|
Gets the list of the current active adapters. |
|
|
|
Example: |
|
|
|
```python |
|
from diffusers import DiffusionPipeline |
|
|
|
pipeline = DiffusionPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", |
|
).to("cuda") |
|
pipeline.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors", adapter_name="toy") |
|
pipeline.get_active_adapters() |
|
``` |
|
""" |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError( |
|
"PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`" |
|
) |
|
|
|
from peft.tuners.tuners_utils import BaseTunerLayer |
|
|
|
active_adapters = [] |
|
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet |
|
for module in unet.modules(): |
|
if isinstance(module, BaseTunerLayer): |
|
active_adapters = module.active_adapters |
|
break |
|
|
|
return active_adapters |
|
|
|
def get_list_adapters(self) -> Dict[str, List[str]]: |
|
""" |
|
Gets the current list of all available adapters in the pipeline. |
|
""" |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError( |
|
"PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`" |
|
) |
|
|
|
set_adapters = {} |
|
|
|
if hasattr(self, "text_encoder") and hasattr(self.text_encoder, "peft_config"): |
|
set_adapters["text_encoder"] = list(self.text_encoder.peft_config.keys()) |
|
|
|
if hasattr(self, "text_encoder_2") and hasattr(self.text_encoder_2, "peft_config"): |
|
set_adapters["text_encoder_2"] = list(self.text_encoder_2.peft_config.keys()) |
|
|
|
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet |
|
if hasattr(self, self.unet_name) and hasattr(unet, "peft_config"): |
|
set_adapters[self.unet_name] = list(self.unet.peft_config.keys()) |
|
|
|
return set_adapters |
|
|
|
def set_lora_device(self, adapter_names: List[str], device: Union[torch.device, str, int]) -> None: |
|
""" |
|
Moves the LoRAs listed in `adapter_names` to a target device. Useful for offloading the LoRA to the CPU in case |
|
you want to load multiple adapters and free some GPU memory. |
|
|
|
Args: |
|
adapter_names (`List[str]`): |
|
List of adapters to send device to. |
|
device (`Union[torch.device, str, int]`): |
|
Device to send the adapters to. Can be either a torch device, a str or an integer. |
|
""" |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError("PEFT backend is required for this method.") |
|
|
|
from peft.tuners.tuners_utils import BaseTunerLayer |
|
|
|
|
|
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet |
|
for unet_module in unet.modules(): |
|
if isinstance(unet_module, BaseTunerLayer): |
|
for adapter_name in adapter_names: |
|
unet_module.lora_A[adapter_name].to(device) |
|
unet_module.lora_B[adapter_name].to(device) |
|
|
|
if hasattr(unet_module, "lora_magnitude_vector") and unet_module.lora_magnitude_vector is not None: |
|
unet_module.lora_magnitude_vector[adapter_name] = unet_module.lora_magnitude_vector[ |
|
adapter_name |
|
].to(device) |
|
|
|
|
|
modules_to_process = [] |
|
if hasattr(self, "text_encoder"): |
|
modules_to_process.append(self.text_encoder) |
|
|
|
if hasattr(self, "text_encoder_2"): |
|
modules_to_process.append(self.text_encoder_2) |
|
|
|
for text_encoder in modules_to_process: |
|
|
|
for text_encoder_module in text_encoder.modules(): |
|
if isinstance(text_encoder_module, BaseTunerLayer): |
|
for adapter_name in adapter_names: |
|
text_encoder_module.lora_A[adapter_name].to(device) |
|
text_encoder_module.lora_B[adapter_name].to(device) |
|
|
|
if ( |
|
hasattr(text_encoder_module, "lora_magnitude_vector") |
|
and text_encoder_module.lora_magnitude_vector is not None |
|
): |
|
text_encoder_module.lora_magnitude_vector[ |
|
adapter_name |
|
] = text_encoder_module.lora_magnitude_vector[adapter_name].to(device) |
|
|
|
|
|
class StableDiffusionXLLoraLoaderMixin(LoraLoaderMixin): |
|
"""This class overrides `LoraLoaderMixin` with LoRA loading/saving code that's specific to SDXL""" |
|
|
|
|
|
def load_lora_weights( |
|
self, |
|
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], |
|
adapter_name: Optional[str] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and |
|
`self.text_encoder`. |
|
|
|
All kwargs are forwarded to `self.lora_state_dict`. |
|
|
|
See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. |
|
|
|
See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into |
|
`self.unet`. |
|
|
|
See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded |
|
into `self.text_encoder`. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): |
|
See [`~loaders.LoraLoaderMixin.lora_state_dict`]. |
|
adapter_name (`str`, *optional*): |
|
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use |
|
`default_{i}` where i is the total number of adapters being loaded. |
|
kwargs (`dict`, *optional*): |
|
See [`~loaders.LoraLoaderMixin.lora_state_dict`]. |
|
""" |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError("PEFT backend is required for this method.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
if isinstance(pretrained_model_name_or_path_or_dict, dict): |
|
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() |
|
|
|
|
|
state_dict, network_alphas = self.lora_state_dict( |
|
pretrained_model_name_or_path_or_dict, |
|
unet_config=self.unet.config, |
|
**kwargs, |
|
) |
|
is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys()) |
|
if not is_correct_format: |
|
raise ValueError("Invalid LoRA checkpoint.") |
|
|
|
self.load_lora_into_unet( |
|
state_dict, network_alphas=network_alphas, unet=self.unet, adapter_name=adapter_name, _pipeline=self |
|
) |
|
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} |
|
if len(text_encoder_state_dict) > 0: |
|
self.load_lora_into_text_encoder( |
|
text_encoder_state_dict, |
|
network_alphas=network_alphas, |
|
text_encoder=self.text_encoder, |
|
prefix="text_encoder", |
|
lora_scale=self.lora_scale, |
|
adapter_name=adapter_name, |
|
_pipeline=self, |
|
) |
|
|
|
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} |
|
if len(text_encoder_2_state_dict) > 0: |
|
self.load_lora_into_text_encoder( |
|
text_encoder_2_state_dict, |
|
network_alphas=network_alphas, |
|
text_encoder=self.text_encoder_2, |
|
prefix="text_encoder_2", |
|
lora_scale=self.lora_scale, |
|
adapter_name=adapter_name, |
|
_pipeline=self, |
|
) |
|
|
|
@classmethod |
|
def save_lora_weights( |
|
cls, |
|
save_directory: Union[str, os.PathLike], |
|
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, |
|
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, |
|
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, |
|
is_main_process: bool = True, |
|
weight_name: str = None, |
|
save_function: Callable = None, |
|
safe_serialization: bool = True, |
|
): |
|
r""" |
|
Save the LoRA parameters corresponding to the UNet and text encoder. |
|
|
|
Arguments: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory to save LoRA parameters to. Will be created if it doesn't exist. |
|
unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): |
|
State dict of the LoRA layers corresponding to the `unet`. |
|
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): |
|
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text |
|
encoder LoRA state dict because it comes from 🤗 Transformers. |
|
text_encoder_2_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): |
|
State dict of the LoRA layers corresponding to the `text_encoder_2`. Must explicitly pass the text |
|
encoder LoRA state dict because it comes from 🤗 Transformers. |
|
is_main_process (`bool`, *optional*, defaults to `True`): |
|
Whether the process calling this is the main process or not. Useful during distributed training and you |
|
need to call this function on all processes. In this case, set `is_main_process=True` only on the main |
|
process to avoid race conditions. |
|
save_function (`Callable`): |
|
The function to use to save the state dictionary. Useful during distributed training when you need to |
|
replace `torch.save` with another method. Can be configured with the environment variable |
|
`DIFFUSERS_SAVE_MODE`. |
|
safe_serialization (`bool`, *optional*, defaults to `True`): |
|
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. |
|
""" |
|
state_dict = {} |
|
|
|
def pack_weights(layers, prefix): |
|
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers |
|
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()} |
|
return layers_state_dict |
|
|
|
if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers): |
|
raise ValueError( |
|
"You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`." |
|
) |
|
|
|
if unet_lora_layers: |
|
state_dict.update(pack_weights(unet_lora_layers, "unet")) |
|
|
|
if text_encoder_lora_layers: |
|
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder")) |
|
|
|
if text_encoder_2_lora_layers: |
|
state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) |
|
|
|
cls.write_lora_layers( |
|
state_dict=state_dict, |
|
save_directory=save_directory, |
|
is_main_process=is_main_process, |
|
weight_name=weight_name, |
|
save_function=save_function, |
|
safe_serialization=safe_serialization, |
|
) |
|
|
|
def _remove_text_encoder_monkey_patch(self): |
|
recurse_remove_peft_layers(self.text_encoder) |
|
|
|
if getattr(self.text_encoder, "peft_config", None) is not None: |
|
del self.text_encoder.peft_config |
|
self.text_encoder._hf_peft_config_loaded = None |
|
|
|
recurse_remove_peft_layers(self.text_encoder_2) |
|
if getattr(self.text_encoder_2, "peft_config", None) is not None: |
|
del self.text_encoder_2.peft_config |
|
self.text_encoder_2._hf_peft_config_loaded = None |
|
|
|
|
|
class SD3LoraLoaderMixin: |
|
r""" |
|
Load LoRA layers into [`SD3Transformer2DModel`]. |
|
""" |
|
|
|
transformer_name = TRANSFORMER_NAME |
|
num_fused_loras = 0 |
|
|
|
def load_lora_weights( |
|
self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs |
|
): |
|
""" |
|
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and |
|
`self.text_encoder`. |
|
|
|
All kwargs are forwarded to `self.lora_state_dict`. |
|
|
|
See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. |
|
|
|
See [`~loaders.LoraLoaderMixin.load_lora_into_transformer`] for more details on how the state dict is loaded |
|
into `self.transformer`. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): |
|
See [`~loaders.LoraLoaderMixin.lora_state_dict`]. |
|
kwargs (`dict`, *optional*): |
|
See [`~loaders.LoraLoaderMixin.lora_state_dict`]. |
|
adapter_name (`str`, *optional*): |
|
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use |
|
`default_{i}` where i is the total number of adapters being loaded. |
|
""" |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError("PEFT backend is required for this method.") |
|
|
|
|
|
if isinstance(pretrained_model_name_or_path_or_dict, dict): |
|
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() |
|
|
|
|
|
state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) |
|
|
|
is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys()) |
|
if not is_correct_format: |
|
raise ValueError("Invalid LoRA checkpoint.") |
|
|
|
self.load_lora_into_transformer( |
|
state_dict, |
|
transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer, |
|
adapter_name=adapter_name, |
|
_pipeline=self, |
|
) |
|
|
|
@classmethod |
|
@validate_hf_hub_args |
|
def lora_state_dict( |
|
cls, |
|
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], |
|
**kwargs, |
|
): |
|
r""" |
|
Return state dict for lora weights and the network alphas. |
|
|
|
<Tip warning={true}> |
|
|
|
We support loading A1111 formatted LoRA checkpoints in a limited capacity. |
|
|
|
This function is experimental and might change in the future. |
|
|
|
</Tip> |
|
|
|
Parameters: |
|
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): |
|
Can be either: |
|
|
|
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on |
|
the Hub. |
|
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved |
|
with [`ModelMixin.save_pretrained`]. |
|
- A [torch state |
|
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). |
|
|
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache |
|
is not used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any |
|
incompletely downloaded files are deleted. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
Whether to only load local model weights and configuration files or not. If set to `True`, the model |
|
won't be downloaded from the Hub. |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from |
|
`diffusers-cli login` (stored in `~/.huggingface`) is used. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier |
|
allowed by Git. |
|
subfolder (`str`, *optional*, defaults to `""`): |
|
The subfolder location of a model file within a larger model repository on the Hub or locally. |
|
|
|
""" |
|
|
|
|
|
cache_dir = kwargs.pop("cache_dir", None) |
|
force_download = kwargs.pop("force_download", False) |
|
resume_download = kwargs.pop("resume_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
local_files_only = kwargs.pop("local_files_only", None) |
|
token = kwargs.pop("token", None) |
|
revision = kwargs.pop("revision", None) |
|
subfolder = kwargs.pop("subfolder", None) |
|
weight_name = kwargs.pop("weight_name", None) |
|
use_safetensors = kwargs.pop("use_safetensors", None) |
|
|
|
allow_pickle = False |
|
if use_safetensors is None: |
|
use_safetensors = True |
|
allow_pickle = True |
|
|
|
user_agent = { |
|
"file_type": "attn_procs_weights", |
|
"framework": "pytorch", |
|
} |
|
|
|
model_file = None |
|
if not isinstance(pretrained_model_name_or_path_or_dict, dict): |
|
|
|
if (use_safetensors and weight_name is None) or ( |
|
weight_name is not None and weight_name.endswith(".safetensors") |
|
): |
|
try: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path_or_dict, |
|
weights_name=weight_name or LORA_WEIGHT_NAME_SAFE, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
) |
|
state_dict = safetensors.torch.load_file(model_file, device="cpu") |
|
except (IOError, safetensors.SafetensorError) as e: |
|
if not allow_pickle: |
|
raise e |
|
|
|
model_file = None |
|
pass |
|
|
|
if model_file is None: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path_or_dict, |
|
weights_name=weight_name or LORA_WEIGHT_NAME, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
) |
|
state_dict = load_state_dict(model_file) |
|
else: |
|
state_dict = pretrained_model_name_or_path_or_dict |
|
|
|
return state_dict |
|
|
|
@classmethod |
|
def load_lora_into_transformer(cls, state_dict, transformer, adapter_name=None, _pipeline=None): |
|
""" |
|
This will load the LoRA layers specified in `state_dict` into `transformer`. |
|
|
|
Parameters: |
|
state_dict (`dict`): |
|
A standard state dict containing the lora layer parameters. The keys can either be indexed directly |
|
into the unet or prefixed with an additional `unet` which can be used to distinguish between text |
|
encoder lora layers. |
|
transformer (`SD3Transformer2DModel`): |
|
The Transformer model to load the LoRA layers into. |
|
adapter_name (`str`, *optional*): |
|
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use |
|
`default_{i}` where i is the total number of adapters being loaded. |
|
""" |
|
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict |
|
|
|
keys = list(state_dict.keys()) |
|
|
|
transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)] |
|
state_dict = { |
|
k.replace(f"{cls.transformer_name}.", ""): v for k, v in state_dict.items() if k in transformer_keys |
|
} |
|
|
|
if len(state_dict.keys()) > 0: |
|
|
|
first_key = next(iter(state_dict.keys())) |
|
if "lora_A" not in first_key: |
|
state_dict = convert_unet_state_dict_to_peft(state_dict) |
|
|
|
if adapter_name in getattr(transformer, "peft_config", {}): |
|
raise ValueError( |
|
f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name." |
|
) |
|
|
|
rank = {} |
|
for key, val in state_dict.items(): |
|
if "lora_B" in key: |
|
rank[key] = val.shape[1] |
|
|
|
lora_config_kwargs = get_peft_kwargs(rank, network_alpha_dict=None, peft_state_dict=state_dict) |
|
if "use_dora" in lora_config_kwargs: |
|
if lora_config_kwargs["use_dora"] and is_peft_version("<", "0.9.0"): |
|
raise ValueError( |
|
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`." |
|
) |
|
else: |
|
lora_config_kwargs.pop("use_dora") |
|
lora_config = LoraConfig(**lora_config_kwargs) |
|
|
|
|
|
if adapter_name is None: |
|
adapter_name = get_adapter_name(transformer) |
|
|
|
|
|
|
|
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline) |
|
|
|
inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name) |
|
incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name) |
|
|
|
if incompatible_keys is not None: |
|
|
|
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) |
|
if unexpected_keys: |
|
logger.warning( |
|
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " |
|
f" {unexpected_keys}. " |
|
) |
|
|
|
|
|
if is_model_cpu_offload: |
|
_pipeline.enable_model_cpu_offload() |
|
elif is_sequential_cpu_offload: |
|
_pipeline.enable_sequential_cpu_offload() |
|
|
|
|
|
@classmethod |
|
def save_lora_weights( |
|
cls, |
|
save_directory: Union[str, os.PathLike], |
|
transformer_lora_layers: Dict[str, torch.nn.Module] = None, |
|
is_main_process: bool = True, |
|
weight_name: str = None, |
|
save_function: Callable = None, |
|
safe_serialization: bool = True, |
|
): |
|
r""" |
|
Save the LoRA parameters corresponding to the UNet and text encoder. |
|
|
|
Arguments: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory to save LoRA parameters to. Will be created if it doesn't exist. |
|
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): |
|
State dict of the LoRA layers corresponding to the `transformer`. |
|
is_main_process (`bool`, *optional*, defaults to `True`): |
|
Whether the process calling this is the main process or not. Useful during distributed training and you |
|
need to call this function on all processes. In this case, set `is_main_process=True` only on the main |
|
process to avoid race conditions. |
|
save_function (`Callable`): |
|
The function to use to save the state dictionary. Useful during distributed training when you need to |
|
replace `torch.save` with another method. Can be configured with the environment variable |
|
`DIFFUSERS_SAVE_MODE`. |
|
safe_serialization (`bool`, *optional*, defaults to `True`): |
|
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. |
|
""" |
|
state_dict = {} |
|
|
|
def pack_weights(layers, prefix): |
|
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers |
|
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()} |
|
return layers_state_dict |
|
|
|
if not transformer_lora_layers: |
|
raise ValueError("You must pass `transformer_lora_layers`.") |
|
|
|
if transformer_lora_layers: |
|
state_dict.update(pack_weights(transformer_lora_layers, cls.transformer_name)) |
|
|
|
|
|
cls.write_lora_layers( |
|
state_dict=state_dict, |
|
save_directory=save_directory, |
|
is_main_process=is_main_process, |
|
weight_name=weight_name, |
|
save_function=save_function, |
|
safe_serialization=safe_serialization, |
|
) |
|
|
|
@staticmethod |
|
def write_lora_layers( |
|
state_dict: Dict[str, torch.Tensor], |
|
save_directory: str, |
|
is_main_process: bool, |
|
weight_name: str, |
|
save_function: Callable, |
|
safe_serialization: bool, |
|
): |
|
if os.path.isfile(save_directory): |
|
logger.error(f"Provided path ({save_directory}) should be a directory, not a file") |
|
return |
|
|
|
if save_function is None: |
|
if safe_serialization: |
|
|
|
def save_function(weights, filename): |
|
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"}) |
|
|
|
else: |
|
save_function = torch.save |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
if weight_name is None: |
|
if safe_serialization: |
|
weight_name = LORA_WEIGHT_NAME_SAFE |
|
else: |
|
weight_name = LORA_WEIGHT_NAME |
|
|
|
save_path = Path(save_directory, weight_name).as_posix() |
|
save_function(state_dict, save_path) |
|
logger.info(f"Model weights saved in {save_path}") |
|
|
|
def unload_lora_weights(self): |
|
""" |
|
Unloads the LoRA parameters. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> # Assuming `pipeline` is already loaded with the LoRA parameters. |
|
>>> pipeline.unload_lora_weights() |
|
>>> ... |
|
``` |
|
""" |
|
transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer |
|
recurse_remove_peft_layers(transformer) |
|
if hasattr(transformer, "peft_config"): |
|
del transformer.peft_config |
|
|
|
@classmethod |
|
|
|
def _optionally_disable_offloading(cls, _pipeline): |
|
""" |
|
Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU. |
|
|
|
Args: |
|
_pipeline (`DiffusionPipeline`): |
|
The pipeline to disable offloading for. |
|
|
|
Returns: |
|
tuple: |
|
A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True. |
|
""" |
|
is_model_cpu_offload = False |
|
is_sequential_cpu_offload = False |
|
|
|
if _pipeline is not None and _pipeline.hf_device_map is None: |
|
for _, component in _pipeline.components.items(): |
|
if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"): |
|
if not is_model_cpu_offload: |
|
is_model_cpu_offload = isinstance(component._hf_hook, CpuOffload) |
|
if not is_sequential_cpu_offload: |
|
is_sequential_cpu_offload = ( |
|
isinstance(component._hf_hook, AlignDevicesHook) |
|
or hasattr(component._hf_hook, "hooks") |
|
and isinstance(component._hf_hook.hooks[0], AlignDevicesHook) |
|
) |
|
|
|
logger.info( |
|
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again." |
|
) |
|
remove_hook_from_module(component, recurse=is_sequential_cpu_offload) |
|
|
|
return (is_model_cpu_offload, is_sequential_cpu_offload) |
|
|
|
def fuse_lora( |
|
self, |
|
fuse_transformer: bool = True, |
|
lora_scale: float = 1.0, |
|
safe_fusing: bool = False, |
|
adapter_names: Optional[List[str]] = None, |
|
): |
|
r""" |
|
Fuses the LoRA parameters into the original parameters of the corresponding blocks. |
|
|
|
<Tip warning={true}> |
|
|
|
This is an experimental API. |
|
|
|
</Tip> |
|
|
|
Args: |
|
fuse_transformer (`bool`, defaults to `True`): Whether to fuse the transformer LoRA parameters. |
|
lora_scale (`float`, defaults to 1.0): |
|
Controls how much to influence the outputs with the LoRA parameters. |
|
safe_fusing (`bool`, defaults to `False`): |
|
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. |
|
adapter_names (`List[str]`, *optional*): |
|
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. |
|
|
|
Example: |
|
|
|
```py |
|
from diffusers import DiffusionPipeline |
|
import torch |
|
|
|
pipeline = DiffusionPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16 |
|
).to("cuda") |
|
pipeline.load_lora_weights( |
|
"nerijs/pixel-art-medium-128-v0.1", |
|
weight_name="pixel-art-medium-128-v0.1.safetensors", |
|
adapter_name="pixel", |
|
) |
|
pipeline.fuse_lora(lora_scale=0.7) |
|
``` |
|
""" |
|
if fuse_transformer: |
|
self.num_fused_loras += 1 |
|
|
|
if fuse_transformer: |
|
transformer = ( |
|
getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer |
|
) |
|
transformer.fuse_lora(lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names) |
|
|
|
def unfuse_lora(self, unfuse_transformer: bool = True): |
|
r""" |
|
Reverses the effect of |
|
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.fuse_lora). |
|
|
|
<Tip warning={true}> |
|
|
|
This is an experimental API. |
|
|
|
</Tip> |
|
|
|
Args: |
|
unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the transformer LoRA parameters. |
|
""" |
|
from peft.tuners.tuners_utils import BaseTunerLayer |
|
|
|
transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer |
|
if unfuse_transformer: |
|
for module in transformer.modules(): |
|
if isinstance(module, BaseTunerLayer): |
|
module.unmerge() |
|
|
|
self.num_fused_loras -= 1 |
|
|