|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Conversion script for the Stable Diffusion checkpoints.""" |
|
|
|
import os |
|
import re |
|
from contextlib import nullcontext |
|
from io import BytesIO |
|
from urllib.parse import urlparse |
|
|
|
import requests |
|
import torch |
|
import yaml |
|
|
|
from ..models.modeling_utils import load_state_dict |
|
from ..schedulers import ( |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EDMDPMSolverMultistepScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
HeunDiscreteScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
) |
|
from ..utils import ( |
|
SAFETENSORS_WEIGHTS_NAME, |
|
WEIGHTS_NAME, |
|
deprecate, |
|
is_accelerate_available, |
|
is_transformers_available, |
|
logging, |
|
) |
|
from ..utils.hub_utils import _get_model_file |
|
|
|
|
|
if is_transformers_available(): |
|
from transformers import AutoImageProcessor |
|
|
|
if is_accelerate_available(): |
|
from accelerate import init_empty_weights |
|
|
|
from ..models.modeling_utils import load_model_dict_into_meta |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
CHECKPOINT_KEY_NAMES = { |
|
"v2": "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight", |
|
"xl_base": "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.bias", |
|
"xl_refiner": "conditioner.embedders.0.model.transformer.resblocks.9.mlp.c_proj.bias", |
|
"upscale": "model.diffusion_model.input_blocks.10.0.skip_connection.bias", |
|
"controlnet": "control_model.time_embed.0.weight", |
|
"playground-v2-5": "edm_mean", |
|
"inpainting": "model.diffusion_model.input_blocks.0.0.weight", |
|
"clip": "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight", |
|
"clip_sdxl": "conditioner.embedders.0.transformer.text_model.embeddings.position_embedding.weight", |
|
"clip_sd3": "text_encoders.clip_l.transformer.text_model.embeddings.position_embedding.weight", |
|
"open_clip": "cond_stage_model.model.token_embedding.weight", |
|
"open_clip_sdxl": "conditioner.embedders.1.model.positional_embedding", |
|
"open_clip_sdxl_refiner": "conditioner.embedders.0.model.text_projection", |
|
"open_clip_sd3": "text_encoders.clip_g.transformer.text_model.embeddings.position_embedding.weight", |
|
"stable_cascade_stage_b": "down_blocks.1.0.channelwise.0.weight", |
|
"stable_cascade_stage_c": "clip_txt_mapper.weight", |
|
"sd3": "model.diffusion_model.joint_blocks.0.context_block.adaLN_modulation.1.bias", |
|
} |
|
|
|
DIFFUSERS_DEFAULT_PIPELINE_PATHS = { |
|
"xl_base": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-xl-base-1.0"}, |
|
"xl_refiner": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-xl-refiner-1.0"}, |
|
"xl_inpaint": {"pretrained_model_name_or_path": "diffusers/stable-diffusion-xl-1.0-inpainting-0.1"}, |
|
"playground-v2-5": {"pretrained_model_name_or_path": "playgroundai/playground-v2.5-1024px-aesthetic"}, |
|
"upscale": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-x4-upscaler"}, |
|
"inpainting": {"pretrained_model_name_or_path": "runwayml/stable-diffusion-inpainting"}, |
|
"inpainting_v2": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-2-inpainting"}, |
|
"controlnet": {"pretrained_model_name_or_path": "lllyasviel/control_v11p_sd15_canny"}, |
|
"v2": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-2-1"}, |
|
"v1": {"pretrained_model_name_or_path": "runwayml/stable-diffusion-v1-5"}, |
|
"stable_cascade_stage_b": {"pretrained_model_name_or_path": "stabilityai/stable-cascade", "subfolder": "decoder"}, |
|
"stable_cascade_stage_b_lite": { |
|
"pretrained_model_name_or_path": "stabilityai/stable-cascade", |
|
"subfolder": "decoder_lite", |
|
}, |
|
"stable_cascade_stage_c": { |
|
"pretrained_model_name_or_path": "stabilityai/stable-cascade-prior", |
|
"subfolder": "prior", |
|
}, |
|
"stable_cascade_stage_c_lite": { |
|
"pretrained_model_name_or_path": "stabilityai/stable-cascade-prior", |
|
"subfolder": "prior_lite", |
|
}, |
|
"sd3": { |
|
"pretrained_model_name_or_path": "stabilityai/stable-diffusion-3-medium-diffusers", |
|
}, |
|
} |
|
|
|
|
|
DIFFUSERS_TO_LDM_DEFAULT_IMAGE_SIZE_MAP = { |
|
"xl_base": 1024, |
|
"xl_refiner": 1024, |
|
"xl_inpaint": 1024, |
|
"playground-v2-5": 1024, |
|
"upscale": 512, |
|
"inpainting": 512, |
|
"inpainting_v2": 512, |
|
"controlnet": 512, |
|
"v2": 768, |
|
"v1": 512, |
|
} |
|
|
|
|
|
DIFFUSERS_TO_LDM_MAPPING = { |
|
"unet": { |
|
"layers": { |
|
"time_embedding.linear_1.weight": "time_embed.0.weight", |
|
"time_embedding.linear_1.bias": "time_embed.0.bias", |
|
"time_embedding.linear_2.weight": "time_embed.2.weight", |
|
"time_embedding.linear_2.bias": "time_embed.2.bias", |
|
"conv_in.weight": "input_blocks.0.0.weight", |
|
"conv_in.bias": "input_blocks.0.0.bias", |
|
"conv_norm_out.weight": "out.0.weight", |
|
"conv_norm_out.bias": "out.0.bias", |
|
"conv_out.weight": "out.2.weight", |
|
"conv_out.bias": "out.2.bias", |
|
}, |
|
"class_embed_type": { |
|
"class_embedding.linear_1.weight": "label_emb.0.0.weight", |
|
"class_embedding.linear_1.bias": "label_emb.0.0.bias", |
|
"class_embedding.linear_2.weight": "label_emb.0.2.weight", |
|
"class_embedding.linear_2.bias": "label_emb.0.2.bias", |
|
}, |
|
"addition_embed_type": { |
|
"add_embedding.linear_1.weight": "label_emb.0.0.weight", |
|
"add_embedding.linear_1.bias": "label_emb.0.0.bias", |
|
"add_embedding.linear_2.weight": "label_emb.0.2.weight", |
|
"add_embedding.linear_2.bias": "label_emb.0.2.bias", |
|
}, |
|
}, |
|
"controlnet": { |
|
"layers": { |
|
"time_embedding.linear_1.weight": "time_embed.0.weight", |
|
"time_embedding.linear_1.bias": "time_embed.0.bias", |
|
"time_embedding.linear_2.weight": "time_embed.2.weight", |
|
"time_embedding.linear_2.bias": "time_embed.2.bias", |
|
"conv_in.weight": "input_blocks.0.0.weight", |
|
"conv_in.bias": "input_blocks.0.0.bias", |
|
"controlnet_cond_embedding.conv_in.weight": "input_hint_block.0.weight", |
|
"controlnet_cond_embedding.conv_in.bias": "input_hint_block.0.bias", |
|
"controlnet_cond_embedding.conv_out.weight": "input_hint_block.14.weight", |
|
"controlnet_cond_embedding.conv_out.bias": "input_hint_block.14.bias", |
|
}, |
|
"class_embed_type": { |
|
"class_embedding.linear_1.weight": "label_emb.0.0.weight", |
|
"class_embedding.linear_1.bias": "label_emb.0.0.bias", |
|
"class_embedding.linear_2.weight": "label_emb.0.2.weight", |
|
"class_embedding.linear_2.bias": "label_emb.0.2.bias", |
|
}, |
|
"addition_embed_type": { |
|
"add_embedding.linear_1.weight": "label_emb.0.0.weight", |
|
"add_embedding.linear_1.bias": "label_emb.0.0.bias", |
|
"add_embedding.linear_2.weight": "label_emb.0.2.weight", |
|
"add_embedding.linear_2.bias": "label_emb.0.2.bias", |
|
}, |
|
}, |
|
"vae": { |
|
"encoder.conv_in.weight": "encoder.conv_in.weight", |
|
"encoder.conv_in.bias": "encoder.conv_in.bias", |
|
"encoder.conv_out.weight": "encoder.conv_out.weight", |
|
"encoder.conv_out.bias": "encoder.conv_out.bias", |
|
"encoder.conv_norm_out.weight": "encoder.norm_out.weight", |
|
"encoder.conv_norm_out.bias": "encoder.norm_out.bias", |
|
"decoder.conv_in.weight": "decoder.conv_in.weight", |
|
"decoder.conv_in.bias": "decoder.conv_in.bias", |
|
"decoder.conv_out.weight": "decoder.conv_out.weight", |
|
"decoder.conv_out.bias": "decoder.conv_out.bias", |
|
"decoder.conv_norm_out.weight": "decoder.norm_out.weight", |
|
"decoder.conv_norm_out.bias": "decoder.norm_out.bias", |
|
"quant_conv.weight": "quant_conv.weight", |
|
"quant_conv.bias": "quant_conv.bias", |
|
"post_quant_conv.weight": "post_quant_conv.weight", |
|
"post_quant_conv.bias": "post_quant_conv.bias", |
|
}, |
|
"openclip": { |
|
"layers": { |
|
"text_model.embeddings.position_embedding.weight": "positional_embedding", |
|
"text_model.embeddings.token_embedding.weight": "token_embedding.weight", |
|
"text_model.final_layer_norm.weight": "ln_final.weight", |
|
"text_model.final_layer_norm.bias": "ln_final.bias", |
|
"text_projection.weight": "text_projection", |
|
}, |
|
"transformer": { |
|
"text_model.encoder.layers.": "resblocks.", |
|
"layer_norm1": "ln_1", |
|
"layer_norm2": "ln_2", |
|
".fc1.": ".c_fc.", |
|
".fc2.": ".c_proj.", |
|
".self_attn": ".attn", |
|
"transformer.text_model.final_layer_norm.": "ln_final.", |
|
"transformer.text_model.embeddings.token_embedding.weight": "token_embedding.weight", |
|
"transformer.text_model.embeddings.position_embedding.weight": "positional_embedding", |
|
}, |
|
}, |
|
} |
|
|
|
SD_2_TEXT_ENCODER_KEYS_TO_IGNORE = [ |
|
"cond_stage_model.model.transformer.resblocks.23.attn.in_proj_bias", |
|
"cond_stage_model.model.transformer.resblocks.23.attn.in_proj_weight", |
|
"cond_stage_model.model.transformer.resblocks.23.attn.out_proj.bias", |
|
"cond_stage_model.model.transformer.resblocks.23.attn.out_proj.weight", |
|
"cond_stage_model.model.transformer.resblocks.23.ln_1.bias", |
|
"cond_stage_model.model.transformer.resblocks.23.ln_1.weight", |
|
"cond_stage_model.model.transformer.resblocks.23.ln_2.bias", |
|
"cond_stage_model.model.transformer.resblocks.23.ln_2.weight", |
|
"cond_stage_model.model.transformer.resblocks.23.mlp.c_fc.bias", |
|
"cond_stage_model.model.transformer.resblocks.23.mlp.c_fc.weight", |
|
"cond_stage_model.model.transformer.resblocks.23.mlp.c_proj.bias", |
|
"cond_stage_model.model.transformer.resblocks.23.mlp.c_proj.weight", |
|
"cond_stage_model.model.text_projection", |
|
] |
|
|
|
|
|
SCHEDULER_DEFAULT_CONFIG = { |
|
"beta_schedule": "scaled_linear", |
|
"beta_start": 0.00085, |
|
"beta_end": 0.012, |
|
"interpolation_type": "linear", |
|
"num_train_timesteps": 1000, |
|
"prediction_type": "epsilon", |
|
"sample_max_value": 1.0, |
|
"set_alpha_to_one": False, |
|
"skip_prk_steps": True, |
|
"steps_offset": 1, |
|
"timestep_spacing": "leading", |
|
} |
|
|
|
LDM_VAE_KEY = "first_stage_model." |
|
LDM_VAE_DEFAULT_SCALING_FACTOR = 0.18215 |
|
PLAYGROUND_VAE_SCALING_FACTOR = 0.5 |
|
LDM_UNET_KEY = "model.diffusion_model." |
|
LDM_CONTROLNET_KEY = "control_model." |
|
LDM_CLIP_PREFIX_TO_REMOVE = [ |
|
"cond_stage_model.transformer.", |
|
"conditioner.embedders.0.transformer.", |
|
] |
|
OPEN_CLIP_PREFIX = "conditioner.embedders.0.model." |
|
LDM_OPEN_CLIP_TEXT_PROJECTION_DIM = 1024 |
|
|
|
VALID_URL_PREFIXES = ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"] |
|
|
|
|
|
class SingleFileComponentError(Exception): |
|
def __init__(self, message=None): |
|
self.message = message |
|
super().__init__(self.message) |
|
|
|
|
|
def is_valid_url(url): |
|
result = urlparse(url) |
|
if result.scheme and result.netloc: |
|
return True |
|
|
|
return False |
|
|
|
|
|
def _extract_repo_id_and_weights_name(pretrained_model_name_or_path): |
|
if not is_valid_url(pretrained_model_name_or_path): |
|
raise ValueError("Invalid `pretrained_model_name_or_path` provided. Please set it to a valid URL.") |
|
|
|
pattern = r"([^/]+)/([^/]+)/(?:blob/main/)?(.+)" |
|
weights_name = None |
|
repo_id = (None,) |
|
for prefix in VALID_URL_PREFIXES: |
|
pretrained_model_name_or_path = pretrained_model_name_or_path.replace(prefix, "") |
|
match = re.match(pattern, pretrained_model_name_or_path) |
|
if not match: |
|
logger.warning("Unable to identify the repo_id and weights_name from the provided URL.") |
|
return repo_id, weights_name |
|
|
|
repo_id = f"{match.group(1)}/{match.group(2)}" |
|
weights_name = match.group(3) |
|
|
|
return repo_id, weights_name |
|
|
|
|
|
def _is_model_weights_in_cached_folder(cached_folder, name): |
|
pretrained_model_name_or_path = os.path.join(cached_folder, name) |
|
weights_exist = False |
|
|
|
for weights_name in [WEIGHTS_NAME, SAFETENSORS_WEIGHTS_NAME]: |
|
if os.path.isfile(os.path.join(pretrained_model_name_or_path, weights_name)): |
|
weights_exist = True |
|
|
|
return weights_exist |
|
|
|
|
|
def load_single_file_checkpoint( |
|
pretrained_model_link_or_path, |
|
resume_download=False, |
|
force_download=False, |
|
proxies=None, |
|
token=None, |
|
cache_dir=None, |
|
local_files_only=None, |
|
revision=None, |
|
): |
|
if os.path.isfile(pretrained_model_link_or_path): |
|
pretrained_model_link_or_path = pretrained_model_link_or_path |
|
|
|
else: |
|
repo_id, weights_name = _extract_repo_id_and_weights_name(pretrained_model_link_or_path) |
|
pretrained_model_link_or_path = _get_model_file( |
|
repo_id, |
|
weights_name=weights_name, |
|
force_download=force_download, |
|
cache_dir=cache_dir, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
) |
|
|
|
checkpoint = load_state_dict(pretrained_model_link_or_path) |
|
|
|
|
|
while "state_dict" in checkpoint: |
|
checkpoint = checkpoint["state_dict"] |
|
|
|
return checkpoint |
|
|
|
|
|
def fetch_original_config(original_config_file, local_files_only=False): |
|
if os.path.isfile(original_config_file): |
|
with open(original_config_file, "r") as fp: |
|
original_config_file = fp.read() |
|
|
|
elif is_valid_url(original_config_file): |
|
if local_files_only: |
|
raise ValueError( |
|
"`local_files_only` is set to True, but a URL was provided as `original_config_file`. " |
|
"Please provide a valid local file path." |
|
) |
|
|
|
original_config_file = BytesIO(requests.get(original_config_file).content) |
|
|
|
else: |
|
raise ValueError("Invalid `original_config_file` provided. Please set it to a valid file path or URL.") |
|
|
|
original_config = yaml.safe_load(original_config_file) |
|
|
|
return original_config |
|
|
|
|
|
def is_clip_model(checkpoint): |
|
if CHECKPOINT_KEY_NAMES["clip"] in checkpoint: |
|
return True |
|
|
|
return False |
|
|
|
|
|
def is_clip_sdxl_model(checkpoint): |
|
if CHECKPOINT_KEY_NAMES["clip_sdxl"] in checkpoint: |
|
return True |
|
|
|
return False |
|
|
|
|
|
def is_clip_sd3_model(checkpoint): |
|
if CHECKPOINT_KEY_NAMES["clip_sd3"] in checkpoint: |
|
return True |
|
|
|
return False |
|
|
|
|
|
def is_open_clip_model(checkpoint): |
|
if CHECKPOINT_KEY_NAMES["open_clip"] in checkpoint: |
|
return True |
|
|
|
return False |
|
|
|
|
|
def is_open_clip_sdxl_model(checkpoint): |
|
if CHECKPOINT_KEY_NAMES["open_clip_sdxl"] in checkpoint: |
|
return True |
|
|
|
return False |
|
|
|
|
|
def is_open_clip_sd3_model(checkpoint): |
|
if CHECKPOINT_KEY_NAMES["open_clip_sd3"] in checkpoint: |
|
return True |
|
|
|
return False |
|
|
|
|
|
def is_open_clip_sdxl_refiner_model(checkpoint): |
|
if CHECKPOINT_KEY_NAMES["open_clip_sdxl_refiner"] in checkpoint: |
|
return True |
|
|
|
return False |
|
|
|
|
|
def is_clip_model_in_single_file(class_obj, checkpoint): |
|
is_clip_in_checkpoint = any( |
|
[ |
|
is_clip_model(checkpoint), |
|
is_clip_sd3_model(checkpoint), |
|
is_open_clip_model(checkpoint), |
|
is_open_clip_sdxl_model(checkpoint), |
|
is_open_clip_sdxl_refiner_model(checkpoint), |
|
is_open_clip_sd3_model(checkpoint), |
|
] |
|
) |
|
if ( |
|
class_obj.__name__ == "CLIPTextModel" or class_obj.__name__ == "CLIPTextModelWithProjection" |
|
) and is_clip_in_checkpoint: |
|
return True |
|
|
|
return False |
|
|
|
|
|
def infer_diffusers_model_type(checkpoint): |
|
if ( |
|
CHECKPOINT_KEY_NAMES["inpainting"] in checkpoint |
|
and checkpoint[CHECKPOINT_KEY_NAMES["inpainting"]].shape[1] == 9 |
|
): |
|
if CHECKPOINT_KEY_NAMES["v2"] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES["v2"]].shape[-1] == 1024: |
|
model_type = "inpainting_v2" |
|
else: |
|
model_type = "inpainting" |
|
|
|
elif CHECKPOINT_KEY_NAMES["v2"] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES["v2"]].shape[-1] == 1024: |
|
model_type = "v2" |
|
|
|
elif CHECKPOINT_KEY_NAMES["playground-v2-5"] in checkpoint: |
|
model_type = "playground-v2-5" |
|
|
|
elif CHECKPOINT_KEY_NAMES["xl_base"] in checkpoint: |
|
model_type = "xl_base" |
|
|
|
elif CHECKPOINT_KEY_NAMES["xl_refiner"] in checkpoint: |
|
model_type = "xl_refiner" |
|
|
|
elif CHECKPOINT_KEY_NAMES["upscale"] in checkpoint: |
|
model_type = "upscale" |
|
|
|
elif CHECKPOINT_KEY_NAMES["controlnet"] in checkpoint: |
|
model_type = "controlnet" |
|
|
|
elif ( |
|
CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"] in checkpoint |
|
and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"]].shape[0] == 1536 |
|
): |
|
model_type = "stable_cascade_stage_c_lite" |
|
|
|
elif ( |
|
CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"] in checkpoint |
|
and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"]].shape[0] == 2048 |
|
): |
|
model_type = "stable_cascade_stage_c" |
|
|
|
elif ( |
|
CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"] in checkpoint |
|
and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"]].shape[-1] == 576 |
|
): |
|
model_type = "stable_cascade_stage_b_lite" |
|
|
|
elif ( |
|
CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"] in checkpoint |
|
and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"]].shape[-1] == 640 |
|
): |
|
model_type = "stable_cascade_stage_b" |
|
|
|
elif CHECKPOINT_KEY_NAMES["sd3"] in checkpoint: |
|
model_type = "sd3" |
|
|
|
else: |
|
model_type = "v1" |
|
|
|
return model_type |
|
|
|
|
|
def fetch_diffusers_config(checkpoint): |
|
model_type = infer_diffusers_model_type(checkpoint) |
|
model_path = DIFFUSERS_DEFAULT_PIPELINE_PATHS[model_type] |
|
|
|
return model_path |
|
|
|
|
|
def set_image_size(checkpoint, image_size=None): |
|
if image_size: |
|
return image_size |
|
|
|
model_type = infer_diffusers_model_type(checkpoint) |
|
image_size = DIFFUSERS_TO_LDM_DEFAULT_IMAGE_SIZE_MAP[model_type] |
|
|
|
return image_size |
|
|
|
|
|
|
|
def conv_attn_to_linear(checkpoint): |
|
keys = list(checkpoint.keys()) |
|
attn_keys = ["query.weight", "key.weight", "value.weight"] |
|
for key in keys: |
|
if ".".join(key.split(".")[-2:]) in attn_keys: |
|
if checkpoint[key].ndim > 2: |
|
checkpoint[key] = checkpoint[key][:, :, 0, 0] |
|
elif "proj_attn.weight" in key: |
|
if checkpoint[key].ndim > 2: |
|
checkpoint[key] = checkpoint[key][:, :, 0] |
|
|
|
|
|
def create_unet_diffusers_config_from_ldm( |
|
original_config, checkpoint, image_size=None, upcast_attention=None, num_in_channels=None |
|
): |
|
""" |
|
Creates a config for the diffusers based on the config of the LDM model. |
|
""" |
|
if image_size is not None: |
|
deprecation_message = ( |
|
"Configuring UNet2DConditionModel with the `image_size` argument to `from_single_file`" |
|
"is deprecated and will be ignored in future versions." |
|
) |
|
deprecate("image_size", "1.0.0", deprecation_message) |
|
|
|
image_size = set_image_size(checkpoint, image_size=image_size) |
|
|
|
if ( |
|
"unet_config" in original_config["model"]["params"] |
|
and original_config["model"]["params"]["unet_config"] is not None |
|
): |
|
unet_params = original_config["model"]["params"]["unet_config"]["params"] |
|
else: |
|
unet_params = original_config["model"]["params"]["network_config"]["params"] |
|
|
|
if num_in_channels is not None: |
|
deprecation_message = ( |
|
"Configuring UNet2DConditionModel with the `num_in_channels` argument to `from_single_file`" |
|
"is deprecated and will be ignored in future versions." |
|
) |
|
deprecate("image_size", "1.0.0", deprecation_message) |
|
in_channels = num_in_channels |
|
else: |
|
in_channels = unet_params["in_channels"] |
|
|
|
vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"] |
|
block_out_channels = [unet_params["model_channels"] * mult for mult in unet_params["channel_mult"]] |
|
|
|
down_block_types = [] |
|
resolution = 1 |
|
for i in range(len(block_out_channels)): |
|
block_type = "CrossAttnDownBlock2D" if resolution in unet_params["attention_resolutions"] else "DownBlock2D" |
|
down_block_types.append(block_type) |
|
if i != len(block_out_channels) - 1: |
|
resolution *= 2 |
|
|
|
up_block_types = [] |
|
for i in range(len(block_out_channels)): |
|
block_type = "CrossAttnUpBlock2D" if resolution in unet_params["attention_resolutions"] else "UpBlock2D" |
|
up_block_types.append(block_type) |
|
resolution //= 2 |
|
|
|
if unet_params["transformer_depth"] is not None: |
|
transformer_layers_per_block = ( |
|
unet_params["transformer_depth"] |
|
if isinstance(unet_params["transformer_depth"], int) |
|
else list(unet_params["transformer_depth"]) |
|
) |
|
else: |
|
transformer_layers_per_block = 1 |
|
|
|
vae_scale_factor = 2 ** (len(vae_params["ch_mult"]) - 1) |
|
|
|
head_dim = unet_params["num_heads"] if "num_heads" in unet_params else None |
|
use_linear_projection = ( |
|
unet_params["use_linear_in_transformer"] if "use_linear_in_transformer" in unet_params else False |
|
) |
|
if use_linear_projection: |
|
|
|
if head_dim is None: |
|
head_dim_mult = unet_params["model_channels"] // unet_params["num_head_channels"] |
|
head_dim = [head_dim_mult * c for c in list(unet_params["channel_mult"])] |
|
|
|
class_embed_type = None |
|
addition_embed_type = None |
|
addition_time_embed_dim = None |
|
projection_class_embeddings_input_dim = None |
|
context_dim = None |
|
|
|
if unet_params["context_dim"] is not None: |
|
context_dim = ( |
|
unet_params["context_dim"] |
|
if isinstance(unet_params["context_dim"], int) |
|
else unet_params["context_dim"][0] |
|
) |
|
|
|
if "num_classes" in unet_params: |
|
if unet_params["num_classes"] == "sequential": |
|
if context_dim in [2048, 1280]: |
|
|
|
addition_embed_type = "text_time" |
|
addition_time_embed_dim = 256 |
|
else: |
|
class_embed_type = "projection" |
|
assert "adm_in_channels" in unet_params |
|
projection_class_embeddings_input_dim = unet_params["adm_in_channels"] |
|
|
|
config = { |
|
"sample_size": image_size // vae_scale_factor, |
|
"in_channels": in_channels, |
|
"down_block_types": down_block_types, |
|
"block_out_channels": block_out_channels, |
|
"layers_per_block": unet_params["num_res_blocks"], |
|
"cross_attention_dim": context_dim, |
|
"attention_head_dim": head_dim, |
|
"use_linear_projection": use_linear_projection, |
|
"class_embed_type": class_embed_type, |
|
"addition_embed_type": addition_embed_type, |
|
"addition_time_embed_dim": addition_time_embed_dim, |
|
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim, |
|
"transformer_layers_per_block": transformer_layers_per_block, |
|
} |
|
|
|
if upcast_attention is not None: |
|
deprecation_message = ( |
|
"Configuring UNet2DConditionModel with the `upcast_attention` argument to `from_single_file`" |
|
"is deprecated and will be ignored in future versions." |
|
) |
|
deprecate("image_size", "1.0.0", deprecation_message) |
|
config["upcast_attention"] = upcast_attention |
|
|
|
if "disable_self_attentions" in unet_params: |
|
config["only_cross_attention"] = unet_params["disable_self_attentions"] |
|
|
|
if "num_classes" in unet_params and isinstance(unet_params["num_classes"], int): |
|
config["num_class_embeds"] = unet_params["num_classes"] |
|
|
|
config["out_channels"] = unet_params["out_channels"] |
|
config["up_block_types"] = up_block_types |
|
|
|
return config |
|
|
|
|
|
def create_controlnet_diffusers_config_from_ldm(original_config, checkpoint, image_size=None, **kwargs): |
|
if image_size is not None: |
|
deprecation_message = ( |
|
"Configuring ControlNetModel with the `image_size` argument" |
|
"is deprecated and will be ignored in future versions." |
|
) |
|
deprecate("image_size", "1.0.0", deprecation_message) |
|
|
|
image_size = set_image_size(checkpoint, image_size=image_size) |
|
|
|
unet_params = original_config["model"]["params"]["control_stage_config"]["params"] |
|
diffusers_unet_config = create_unet_diffusers_config_from_ldm(original_config, image_size=image_size) |
|
|
|
controlnet_config = { |
|
"conditioning_channels": unet_params["hint_channels"], |
|
"in_channels": diffusers_unet_config["in_channels"], |
|
"down_block_types": diffusers_unet_config["down_block_types"], |
|
"block_out_channels": diffusers_unet_config["block_out_channels"], |
|
"layers_per_block": diffusers_unet_config["layers_per_block"], |
|
"cross_attention_dim": diffusers_unet_config["cross_attention_dim"], |
|
"attention_head_dim": diffusers_unet_config["attention_head_dim"], |
|
"use_linear_projection": diffusers_unet_config["use_linear_projection"], |
|
"class_embed_type": diffusers_unet_config["class_embed_type"], |
|
"addition_embed_type": diffusers_unet_config["addition_embed_type"], |
|
"addition_time_embed_dim": diffusers_unet_config["addition_time_embed_dim"], |
|
"projection_class_embeddings_input_dim": diffusers_unet_config["projection_class_embeddings_input_dim"], |
|
"transformer_layers_per_block": diffusers_unet_config["transformer_layers_per_block"], |
|
} |
|
|
|
return controlnet_config |
|
|
|
|
|
def create_vae_diffusers_config_from_ldm(original_config, checkpoint, image_size=None, scaling_factor=None): |
|
""" |
|
Creates a config for the diffusers based on the config of the LDM model. |
|
""" |
|
if image_size is not None: |
|
deprecation_message = ( |
|
"Configuring AutoencoderKL with the `image_size` argument" |
|
"is deprecated and will be ignored in future versions." |
|
) |
|
deprecate("image_size", "1.0.0", deprecation_message) |
|
|
|
image_size = set_image_size(checkpoint, image_size=image_size) |
|
|
|
if "edm_mean" in checkpoint and "edm_std" in checkpoint: |
|
latents_mean = checkpoint["edm_mean"] |
|
latents_std = checkpoint["edm_std"] |
|
else: |
|
latents_mean = None |
|
latents_std = None |
|
|
|
vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"] |
|
if (scaling_factor is None) and (latents_mean is not None) and (latents_std is not None): |
|
scaling_factor = PLAYGROUND_VAE_SCALING_FACTOR |
|
|
|
elif (scaling_factor is None) and ("scale_factor" in original_config["model"]["params"]): |
|
scaling_factor = original_config["model"]["params"]["scale_factor"] |
|
|
|
elif scaling_factor is None: |
|
scaling_factor = LDM_VAE_DEFAULT_SCALING_FACTOR |
|
|
|
block_out_channels = [vae_params["ch"] * mult for mult in vae_params["ch_mult"]] |
|
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) |
|
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) |
|
|
|
config = { |
|
"sample_size": image_size, |
|
"in_channels": vae_params["in_channels"], |
|
"out_channels": vae_params["out_ch"], |
|
"down_block_types": down_block_types, |
|
"up_block_types": up_block_types, |
|
"block_out_channels": block_out_channels, |
|
"latent_channels": vae_params["z_channels"], |
|
"layers_per_block": vae_params["num_res_blocks"], |
|
"scaling_factor": scaling_factor, |
|
} |
|
if latents_mean is not None and latents_std is not None: |
|
config.update({"latents_mean": latents_mean, "latents_std": latents_std}) |
|
|
|
return config |
|
|
|
|
|
def update_unet_resnet_ldm_to_diffusers(ldm_keys, new_checkpoint, checkpoint, mapping=None): |
|
for ldm_key in ldm_keys: |
|
diffusers_key = ( |
|
ldm_key.replace("in_layers.0", "norm1") |
|
.replace("in_layers.2", "conv1") |
|
.replace("out_layers.0", "norm2") |
|
.replace("out_layers.3", "conv2") |
|
.replace("emb_layers.1", "time_emb_proj") |
|
.replace("skip_connection", "conv_shortcut") |
|
) |
|
if mapping: |
|
diffusers_key = diffusers_key.replace(mapping["old"], mapping["new"]) |
|
new_checkpoint[diffusers_key] = checkpoint.get(ldm_key) |
|
|
|
|
|
def update_unet_attention_ldm_to_diffusers(ldm_keys, new_checkpoint, checkpoint, mapping): |
|
for ldm_key in ldm_keys: |
|
diffusers_key = ldm_key.replace(mapping["old"], mapping["new"]) |
|
new_checkpoint[diffusers_key] = checkpoint.get(ldm_key) |
|
|
|
|
|
def update_vae_resnet_ldm_to_diffusers(keys, new_checkpoint, checkpoint, mapping): |
|
for ldm_key in keys: |
|
diffusers_key = ldm_key.replace(mapping["old"], mapping["new"]).replace("nin_shortcut", "conv_shortcut") |
|
new_checkpoint[diffusers_key] = checkpoint.get(ldm_key) |
|
|
|
|
|
def update_vae_attentions_ldm_to_diffusers(keys, new_checkpoint, checkpoint, mapping): |
|
for ldm_key in keys: |
|
diffusers_key = ( |
|
ldm_key.replace(mapping["old"], mapping["new"]) |
|
.replace("norm.weight", "group_norm.weight") |
|
.replace("norm.bias", "group_norm.bias") |
|
.replace("q.weight", "to_q.weight") |
|
.replace("q.bias", "to_q.bias") |
|
.replace("k.weight", "to_k.weight") |
|
.replace("k.bias", "to_k.bias") |
|
.replace("v.weight", "to_v.weight") |
|
.replace("v.bias", "to_v.bias") |
|
.replace("proj_out.weight", "to_out.0.weight") |
|
.replace("proj_out.bias", "to_out.0.bias") |
|
) |
|
new_checkpoint[diffusers_key] = checkpoint.get(ldm_key) |
|
|
|
|
|
shape = new_checkpoint[diffusers_key].shape |
|
|
|
if len(shape) == 3: |
|
new_checkpoint[diffusers_key] = new_checkpoint[diffusers_key][:, :, 0] |
|
elif len(shape) == 4: |
|
new_checkpoint[diffusers_key] = new_checkpoint[diffusers_key][:, :, 0, 0] |
|
|
|
|
|
def convert_stable_cascade_unet_single_file_to_diffusers(checkpoint, **kwargs): |
|
is_stage_c = "clip_txt_mapper.weight" in checkpoint |
|
|
|
if is_stage_c: |
|
state_dict = {} |
|
for key in checkpoint.keys(): |
|
if key.endswith("in_proj_weight"): |
|
weights = checkpoint[key].chunk(3, 0) |
|
state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0] |
|
state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1] |
|
state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2] |
|
elif key.endswith("in_proj_bias"): |
|
weights = checkpoint[key].chunk(3, 0) |
|
state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0] |
|
state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1] |
|
state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2] |
|
elif key.endswith("out_proj.weight"): |
|
weights = checkpoint[key] |
|
state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights |
|
elif key.endswith("out_proj.bias"): |
|
weights = checkpoint[key] |
|
state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights |
|
else: |
|
state_dict[key] = checkpoint[key] |
|
else: |
|
state_dict = {} |
|
for key in checkpoint.keys(): |
|
if key.endswith("in_proj_weight"): |
|
weights = checkpoint[key].chunk(3, 0) |
|
state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0] |
|
state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1] |
|
state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2] |
|
elif key.endswith("in_proj_bias"): |
|
weights = checkpoint[key].chunk(3, 0) |
|
state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0] |
|
state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1] |
|
state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2] |
|
elif key.endswith("out_proj.weight"): |
|
weights = checkpoint[key] |
|
state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights |
|
elif key.endswith("out_proj.bias"): |
|
weights = checkpoint[key] |
|
state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights |
|
|
|
elif key.endswith("clip_mapper.weight"): |
|
weights = checkpoint[key] |
|
state_dict[key.replace("clip_mapper.weight", "clip_txt_pooled_mapper.weight")] = weights |
|
elif key.endswith("clip_mapper.bias"): |
|
weights = checkpoint[key] |
|
state_dict[key.replace("clip_mapper.bias", "clip_txt_pooled_mapper.bias")] = weights |
|
else: |
|
state_dict[key] = checkpoint[key] |
|
|
|
return state_dict |
|
|
|
|
|
def convert_ldm_unet_checkpoint(checkpoint, config, extract_ema=False, **kwargs): |
|
""" |
|
Takes a state dict and a config, and returns a converted checkpoint. |
|
""" |
|
|
|
unet_state_dict = {} |
|
keys = list(checkpoint.keys()) |
|
unet_key = LDM_UNET_KEY |
|
|
|
|
|
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema: |
|
logger.warning("Checkpoint has both EMA and non-EMA weights.") |
|
logger.warning( |
|
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" |
|
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." |
|
) |
|
for key in keys: |
|
if key.startswith("model.diffusion_model"): |
|
flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) |
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.get(flat_ema_key) |
|
else: |
|
if sum(k.startswith("model_ema") for k in keys) > 100: |
|
logger.warning( |
|
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" |
|
" weights (usually better for inference), please make sure to add the `--extract_ema` flag." |
|
) |
|
for key in keys: |
|
if key.startswith(unet_key): |
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.get(key) |
|
|
|
new_checkpoint = {} |
|
ldm_unet_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["layers"] |
|
for diffusers_key, ldm_key in ldm_unet_keys.items(): |
|
if ldm_key not in unet_state_dict: |
|
continue |
|
new_checkpoint[diffusers_key] = unet_state_dict[ldm_key] |
|
|
|
if ("class_embed_type" in config) and (config["class_embed_type"] in ["timestep", "projection"]): |
|
class_embed_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["class_embed_type"] |
|
for diffusers_key, ldm_key in class_embed_keys.items(): |
|
new_checkpoint[diffusers_key] = unet_state_dict[ldm_key] |
|
|
|
if ("addition_embed_type" in config) and (config["addition_embed_type"] == "text_time"): |
|
addition_embed_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["addition_embed_type"] |
|
for diffusers_key, ldm_key in addition_embed_keys.items(): |
|
new_checkpoint[diffusers_key] = unet_state_dict[ldm_key] |
|
|
|
|
|
if "num_class_embeds" in config: |
|
if (config["num_class_embeds"] is not None) and ("label_emb.weight" in unet_state_dict): |
|
new_checkpoint["class_embedding.weight"] = unet_state_dict["label_emb.weight"] |
|
|
|
|
|
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) |
|
input_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] |
|
for layer_id in range(num_input_blocks) |
|
} |
|
|
|
|
|
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) |
|
middle_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] |
|
for layer_id in range(num_middle_blocks) |
|
} |
|
|
|
|
|
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) |
|
output_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] |
|
for layer_id in range(num_output_blocks) |
|
} |
|
|
|
|
|
for i in range(1, num_input_blocks): |
|
block_id = (i - 1) // (config["layers_per_block"] + 1) |
|
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) |
|
|
|
resnets = [ |
|
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key |
|
] |
|
update_unet_resnet_ldm_to_diffusers( |
|
resnets, |
|
new_checkpoint, |
|
unet_state_dict, |
|
{"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}, |
|
) |
|
|
|
if f"input_blocks.{i}.0.op.weight" in unet_state_dict: |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.get( |
|
f"input_blocks.{i}.0.op.weight" |
|
) |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.get( |
|
f"input_blocks.{i}.0.op.bias" |
|
) |
|
|
|
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] |
|
if attentions: |
|
update_unet_attention_ldm_to_diffusers( |
|
attentions, |
|
new_checkpoint, |
|
unet_state_dict, |
|
{"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}, |
|
) |
|
|
|
|
|
for key in middle_blocks.keys(): |
|
diffusers_key = max(key - 1, 0) |
|
if key % 2 == 0: |
|
update_unet_resnet_ldm_to_diffusers( |
|
middle_blocks[key], |
|
new_checkpoint, |
|
unet_state_dict, |
|
mapping={"old": f"middle_block.{key}", "new": f"mid_block.resnets.{diffusers_key}"}, |
|
) |
|
else: |
|
update_unet_attention_ldm_to_diffusers( |
|
middle_blocks[key], |
|
new_checkpoint, |
|
unet_state_dict, |
|
mapping={"old": f"middle_block.{key}", "new": f"mid_block.attentions.{diffusers_key}"}, |
|
) |
|
|
|
|
|
for i in range(num_output_blocks): |
|
block_id = i // (config["layers_per_block"] + 1) |
|
layer_in_block_id = i % (config["layers_per_block"] + 1) |
|
|
|
resnets = [ |
|
key for key in output_blocks[i] if f"output_blocks.{i}.0" in key and f"output_blocks.{i}.0.op" not in key |
|
] |
|
update_unet_resnet_ldm_to_diffusers( |
|
resnets, |
|
new_checkpoint, |
|
unet_state_dict, |
|
{"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}, |
|
) |
|
|
|
attentions = [ |
|
key for key in output_blocks[i] if f"output_blocks.{i}.1" in key and f"output_blocks.{i}.1.conv" not in key |
|
] |
|
if attentions: |
|
update_unet_attention_ldm_to_diffusers( |
|
attentions, |
|
new_checkpoint, |
|
unet_state_dict, |
|
{"old": f"output_blocks.{i}.1", "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}"}, |
|
) |
|
|
|
if f"output_blocks.{i}.1.conv.weight" in unet_state_dict: |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ |
|
f"output_blocks.{i}.1.conv.weight" |
|
] |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ |
|
f"output_blocks.{i}.1.conv.bias" |
|
] |
|
if f"output_blocks.{i}.2.conv.weight" in unet_state_dict: |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ |
|
f"output_blocks.{i}.2.conv.weight" |
|
] |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ |
|
f"output_blocks.{i}.2.conv.bias" |
|
] |
|
|
|
return new_checkpoint |
|
|
|
|
|
def convert_controlnet_checkpoint( |
|
checkpoint, |
|
config, |
|
**kwargs, |
|
): |
|
|
|
|
|
if "time_embed.0.weight" in checkpoint: |
|
controlnet_state_dict = checkpoint |
|
|
|
else: |
|
controlnet_state_dict = {} |
|
keys = list(checkpoint.keys()) |
|
controlnet_key = LDM_CONTROLNET_KEY |
|
for key in keys: |
|
if key.startswith(controlnet_key): |
|
controlnet_state_dict[key.replace(controlnet_key, "")] = checkpoint.get(key) |
|
|
|
new_checkpoint = {} |
|
ldm_controlnet_keys = DIFFUSERS_TO_LDM_MAPPING["controlnet"]["layers"] |
|
for diffusers_key, ldm_key in ldm_controlnet_keys.items(): |
|
if ldm_key not in controlnet_state_dict: |
|
continue |
|
new_checkpoint[diffusers_key] = controlnet_state_dict[ldm_key] |
|
|
|
|
|
num_input_blocks = len( |
|
{".".join(layer.split(".")[:2]) for layer in controlnet_state_dict if "input_blocks" in layer} |
|
) |
|
input_blocks = { |
|
layer_id: [key for key in controlnet_state_dict if f"input_blocks.{layer_id}" in key] |
|
for layer_id in range(num_input_blocks) |
|
} |
|
|
|
|
|
for i in range(1, num_input_blocks): |
|
block_id = (i - 1) // (config["layers_per_block"] + 1) |
|
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) |
|
|
|
resnets = [ |
|
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key |
|
] |
|
update_unet_resnet_ldm_to_diffusers( |
|
resnets, |
|
new_checkpoint, |
|
controlnet_state_dict, |
|
{"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}, |
|
) |
|
|
|
if f"input_blocks.{i}.0.op.weight" in controlnet_state_dict: |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = controlnet_state_dict.get( |
|
f"input_blocks.{i}.0.op.weight" |
|
) |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = controlnet_state_dict.get( |
|
f"input_blocks.{i}.0.op.bias" |
|
) |
|
|
|
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] |
|
if attentions: |
|
update_unet_attention_ldm_to_diffusers( |
|
attentions, |
|
new_checkpoint, |
|
controlnet_state_dict, |
|
{"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}, |
|
) |
|
|
|
|
|
for i in range(num_input_blocks): |
|
new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = controlnet_state_dict.get(f"zero_convs.{i}.0.weight") |
|
new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = controlnet_state_dict.get(f"zero_convs.{i}.0.bias") |
|
|
|
|
|
num_middle_blocks = len( |
|
{".".join(layer.split(".")[:2]) for layer in controlnet_state_dict if "middle_block" in layer} |
|
) |
|
middle_blocks = { |
|
layer_id: [key for key in controlnet_state_dict if f"middle_block.{layer_id}" in key] |
|
for layer_id in range(num_middle_blocks) |
|
} |
|
|
|
|
|
for key in middle_blocks.keys(): |
|
diffusers_key = max(key - 1, 0) |
|
if key % 2 == 0: |
|
update_unet_resnet_ldm_to_diffusers( |
|
middle_blocks[key], |
|
new_checkpoint, |
|
controlnet_state_dict, |
|
mapping={"old": f"middle_block.{key}", "new": f"mid_block.resnets.{diffusers_key}"}, |
|
) |
|
else: |
|
update_unet_attention_ldm_to_diffusers( |
|
middle_blocks[key], |
|
new_checkpoint, |
|
controlnet_state_dict, |
|
mapping={"old": f"middle_block.{key}", "new": f"mid_block.attentions.{diffusers_key}"}, |
|
) |
|
|
|
|
|
new_checkpoint["controlnet_mid_block.weight"] = controlnet_state_dict.get("middle_block_out.0.weight") |
|
new_checkpoint["controlnet_mid_block.bias"] = controlnet_state_dict.get("middle_block_out.0.bias") |
|
|
|
|
|
cond_embedding_blocks = { |
|
".".join(layer.split(".")[:2]) |
|
for layer in controlnet_state_dict |
|
if "input_hint_block" in layer and ("input_hint_block.0" not in layer) and ("input_hint_block.14" not in layer) |
|
} |
|
num_cond_embedding_blocks = len(cond_embedding_blocks) |
|
|
|
for idx in range(1, num_cond_embedding_blocks + 1): |
|
diffusers_idx = idx - 1 |
|
cond_block_id = 2 * idx |
|
|
|
new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_idx}.weight"] = controlnet_state_dict.get( |
|
f"input_hint_block.{cond_block_id}.weight" |
|
) |
|
new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_idx}.bias"] = controlnet_state_dict.get( |
|
f"input_hint_block.{cond_block_id}.bias" |
|
) |
|
|
|
return new_checkpoint |
|
|
|
|
|
def convert_ldm_vae_checkpoint(checkpoint, config): |
|
|
|
|
|
vae_state_dict = {} |
|
keys = list(checkpoint.keys()) |
|
vae_key = LDM_VAE_KEY if any(k.startswith(LDM_VAE_KEY) for k in keys) else "" |
|
for key in keys: |
|
if key.startswith(vae_key): |
|
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) |
|
|
|
new_checkpoint = {} |
|
vae_diffusers_ldm_map = DIFFUSERS_TO_LDM_MAPPING["vae"] |
|
for diffusers_key, ldm_key in vae_diffusers_ldm_map.items(): |
|
if ldm_key not in vae_state_dict: |
|
continue |
|
new_checkpoint[diffusers_key] = vae_state_dict[ldm_key] |
|
|
|
|
|
num_down_blocks = len(config["down_block_types"]) |
|
down_blocks = { |
|
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) |
|
} |
|
|
|
for i in range(num_down_blocks): |
|
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] |
|
update_vae_resnet_ldm_to_diffusers( |
|
resnets, |
|
new_checkpoint, |
|
vae_state_dict, |
|
mapping={"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}, |
|
) |
|
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: |
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.get( |
|
f"encoder.down.{i}.downsample.conv.weight" |
|
) |
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.get( |
|
f"encoder.down.{i}.downsample.conv.bias" |
|
) |
|
|
|
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] |
|
update_vae_resnet_ldm_to_diffusers( |
|
resnets, |
|
new_checkpoint, |
|
vae_state_dict, |
|
mapping={"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}, |
|
) |
|
|
|
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] |
|
update_vae_attentions_ldm_to_diffusers( |
|
mid_attentions, new_checkpoint, vae_state_dict, mapping={"old": "mid.attn_1", "new": "mid_block.attentions.0"} |
|
) |
|
|
|
|
|
num_up_blocks = len(config["up_block_types"]) |
|
up_blocks = { |
|
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) |
|
} |
|
|
|
for i in range(num_up_blocks): |
|
block_id = num_up_blocks - 1 - i |
|
resnets = [ |
|
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key |
|
] |
|
update_vae_resnet_ldm_to_diffusers( |
|
resnets, |
|
new_checkpoint, |
|
vae_state_dict, |
|
mapping={"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}, |
|
) |
|
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: |
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ |
|
f"decoder.up.{block_id}.upsample.conv.weight" |
|
] |
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ |
|
f"decoder.up.{block_id}.upsample.conv.bias" |
|
] |
|
|
|
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] |
|
update_vae_resnet_ldm_to_diffusers( |
|
resnets, |
|
new_checkpoint, |
|
vae_state_dict, |
|
mapping={"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}, |
|
) |
|
|
|
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] |
|
update_vae_attentions_ldm_to_diffusers( |
|
mid_attentions, new_checkpoint, vae_state_dict, mapping={"old": "mid.attn_1", "new": "mid_block.attentions.0"} |
|
) |
|
conv_attn_to_linear(new_checkpoint) |
|
|
|
return new_checkpoint |
|
|
|
|
|
def convert_ldm_clip_checkpoint(checkpoint, remove_prefix=None): |
|
keys = list(checkpoint.keys()) |
|
text_model_dict = {} |
|
|
|
remove_prefixes = [] |
|
remove_prefixes.extend(LDM_CLIP_PREFIX_TO_REMOVE) |
|
if remove_prefix: |
|
remove_prefixes.append(remove_prefix) |
|
|
|
for key in keys: |
|
for prefix in remove_prefixes: |
|
if key.startswith(prefix): |
|
diffusers_key = key.replace(prefix, "") |
|
text_model_dict[diffusers_key] = checkpoint.get(key) |
|
|
|
return text_model_dict |
|
|
|
|
|
def convert_open_clip_checkpoint( |
|
text_model, |
|
checkpoint, |
|
prefix="cond_stage_model.model.", |
|
): |
|
text_model_dict = {} |
|
text_proj_key = prefix + "text_projection" |
|
|
|
if text_proj_key in checkpoint: |
|
text_proj_dim = int(checkpoint[text_proj_key].shape[0]) |
|
elif hasattr(text_model.config, "projection_dim"): |
|
text_proj_dim = text_model.config.projection_dim |
|
else: |
|
text_proj_dim = LDM_OPEN_CLIP_TEXT_PROJECTION_DIM |
|
|
|
keys = list(checkpoint.keys()) |
|
keys_to_ignore = SD_2_TEXT_ENCODER_KEYS_TO_IGNORE |
|
|
|
openclip_diffusers_ldm_map = DIFFUSERS_TO_LDM_MAPPING["openclip"]["layers"] |
|
for diffusers_key, ldm_key in openclip_diffusers_ldm_map.items(): |
|
ldm_key = prefix + ldm_key |
|
if ldm_key not in checkpoint: |
|
continue |
|
if ldm_key in keys_to_ignore: |
|
continue |
|
if ldm_key.endswith("text_projection"): |
|
text_model_dict[diffusers_key] = checkpoint[ldm_key].T.contiguous() |
|
else: |
|
text_model_dict[diffusers_key] = checkpoint[ldm_key] |
|
|
|
for key in keys: |
|
if key in keys_to_ignore: |
|
continue |
|
|
|
if not key.startswith(prefix + "transformer."): |
|
continue |
|
|
|
diffusers_key = key.replace(prefix + "transformer.", "") |
|
transformer_diffusers_to_ldm_map = DIFFUSERS_TO_LDM_MAPPING["openclip"]["transformer"] |
|
for new_key, old_key in transformer_diffusers_to_ldm_map.items(): |
|
diffusers_key = ( |
|
diffusers_key.replace(old_key, new_key).replace(".in_proj_weight", "").replace(".in_proj_bias", "") |
|
) |
|
|
|
if key.endswith(".in_proj_weight"): |
|
weight_value = checkpoint.get(key) |
|
|
|
text_model_dict[diffusers_key + ".q_proj.weight"] = weight_value[:text_proj_dim, :].clone().detach() |
|
text_model_dict[diffusers_key + ".k_proj.weight"] = ( |
|
weight_value[text_proj_dim : text_proj_dim * 2, :].clone().detach() |
|
) |
|
text_model_dict[diffusers_key + ".v_proj.weight"] = weight_value[text_proj_dim * 2 :, :].clone().detach() |
|
|
|
elif key.endswith(".in_proj_bias"): |
|
weight_value = checkpoint.get(key) |
|
text_model_dict[diffusers_key + ".q_proj.bias"] = weight_value[:text_proj_dim].clone().detach() |
|
text_model_dict[diffusers_key + ".k_proj.bias"] = ( |
|
weight_value[text_proj_dim : text_proj_dim * 2].clone().detach() |
|
) |
|
text_model_dict[diffusers_key + ".v_proj.bias"] = weight_value[text_proj_dim * 2 :].clone().detach() |
|
else: |
|
text_model_dict[diffusers_key] = checkpoint.get(key) |
|
|
|
return text_model_dict |
|
|
|
|
|
def create_diffusers_clip_model_from_ldm( |
|
cls, |
|
checkpoint, |
|
subfolder="", |
|
config=None, |
|
torch_dtype=None, |
|
local_files_only=None, |
|
is_legacy_loading=False, |
|
): |
|
if config: |
|
config = {"pretrained_model_name_or_path": config} |
|
else: |
|
config = fetch_diffusers_config(checkpoint) |
|
|
|
|
|
|
|
|
|
if is_legacy_loading: |
|
logger.warning( |
|
( |
|
"Detected legacy CLIP loading behavior. Please run `from_single_file` with `local_files_only=False once to update " |
|
"the local cache directory with the necessary CLIP model config files. " |
|
"Attempting to load CLIP model from legacy cache directory." |
|
) |
|
) |
|
|
|
if is_clip_model(checkpoint) or is_clip_sdxl_model(checkpoint): |
|
clip_config = "openai/clip-vit-large-patch14" |
|
config["pretrained_model_name_or_path"] = clip_config |
|
subfolder = "" |
|
|
|
elif is_open_clip_model(checkpoint): |
|
clip_config = "stabilityai/stable-diffusion-2" |
|
config["pretrained_model_name_or_path"] = clip_config |
|
subfolder = "text_encoder" |
|
|
|
else: |
|
clip_config = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k" |
|
config["pretrained_model_name_or_path"] = clip_config |
|
subfolder = "" |
|
|
|
model_config = cls.config_class.from_pretrained(**config, subfolder=subfolder, local_files_only=local_files_only) |
|
ctx = init_empty_weights if is_accelerate_available() else nullcontext |
|
with ctx(): |
|
model = cls(model_config) |
|
|
|
position_embedding_dim = model.text_model.embeddings.position_embedding.weight.shape[-1] |
|
|
|
if is_clip_model(checkpoint): |
|
diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint) |
|
|
|
elif ( |
|
is_clip_sdxl_model(checkpoint) |
|
and checkpoint[CHECKPOINT_KEY_NAMES["clip_sdxl"]].shape[-1] == position_embedding_dim |
|
): |
|
diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint) |
|
|
|
elif ( |
|
is_clip_sd3_model(checkpoint) |
|
and checkpoint[CHECKPOINT_KEY_NAMES["clip_sd3"]].shape[-1] == position_embedding_dim |
|
): |
|
diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint, "text_encoders.clip_l.transformer.") |
|
diffusers_format_checkpoint["text_projection.weight"] = torch.eye(position_embedding_dim) |
|
|
|
elif is_open_clip_model(checkpoint): |
|
prefix = "cond_stage_model.model." |
|
diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix) |
|
|
|
elif ( |
|
is_open_clip_sdxl_model(checkpoint) |
|
and checkpoint[CHECKPOINT_KEY_NAMES["open_clip_sdxl"]].shape[-1] == position_embedding_dim |
|
): |
|
prefix = "conditioner.embedders.1.model." |
|
diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix) |
|
|
|
elif is_open_clip_sdxl_refiner_model(checkpoint): |
|
prefix = "conditioner.embedders.0.model." |
|
diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix) |
|
|
|
elif ( |
|
is_open_clip_sd3_model(checkpoint) |
|
and checkpoint[CHECKPOINT_KEY_NAMES["open_clip_sd3"]].shape[-1] == position_embedding_dim |
|
): |
|
diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint, "text_encoders.clip_g.transformer.") |
|
|
|
else: |
|
raise ValueError("The provided checkpoint does not seem to contain a valid CLIP model.") |
|
|
|
if is_accelerate_available(): |
|
unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype) |
|
else: |
|
_, unexpected_keys = model.load_state_dict(diffusers_format_checkpoint, strict=False) |
|
|
|
if model._keys_to_ignore_on_load_unexpected is not None: |
|
for pat in model._keys_to_ignore_on_load_unexpected: |
|
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] |
|
|
|
if len(unexpected_keys) > 0: |
|
logger.warning( |
|
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" |
|
) |
|
|
|
if torch_dtype is not None: |
|
model.to(torch_dtype) |
|
|
|
model.eval() |
|
|
|
return model |
|
|
|
|
|
def _legacy_load_scheduler( |
|
cls, |
|
checkpoint, |
|
component_name, |
|
original_config=None, |
|
**kwargs, |
|
): |
|
scheduler_type = kwargs.get("scheduler_type", None) |
|
prediction_type = kwargs.get("prediction_type", None) |
|
|
|
if scheduler_type is not None: |
|
deprecation_message = ( |
|
"Please pass an instance of a Scheduler object directly to the `scheduler` argument in `from_single_file`." |
|
) |
|
deprecate("scheduler_type", "1.0.0", deprecation_message) |
|
|
|
if prediction_type is not None: |
|
deprecation_message = ( |
|
"Please configure an instance of a Scheduler with the appropriate `prediction_type` " |
|
"and pass the object directly to the `scheduler` argument in `from_single_file`." |
|
) |
|
deprecate("prediction_type", "1.0.0", deprecation_message) |
|
|
|
scheduler_config = SCHEDULER_DEFAULT_CONFIG |
|
model_type = infer_diffusers_model_type(checkpoint=checkpoint) |
|
|
|
global_step = checkpoint["global_step"] if "global_step" in checkpoint else None |
|
|
|
if original_config: |
|
num_train_timesteps = getattr(original_config["model"]["params"], "timesteps", 1000) |
|
else: |
|
num_train_timesteps = 1000 |
|
|
|
scheduler_config["num_train_timesteps"] = num_train_timesteps |
|
|
|
if model_type == "v2": |
|
if prediction_type is None: |
|
|
|
prediction_type = "epsilon" if global_step == 875000 else "v_prediction" |
|
|
|
else: |
|
prediction_type = prediction_type or "epsilon" |
|
|
|
scheduler_config["prediction_type"] = prediction_type |
|
|
|
if model_type in ["xl_base", "xl_refiner"]: |
|
scheduler_type = "euler" |
|
elif model_type == "playground": |
|
scheduler_type = "edm_dpm_solver_multistep" |
|
else: |
|
if original_config: |
|
beta_start = original_config["model"]["params"].get("linear_start") |
|
beta_end = original_config["model"]["params"].get("linear_end") |
|
|
|
else: |
|
beta_start = 0.02 |
|
beta_end = 0.085 |
|
|
|
scheduler_config["beta_start"] = beta_start |
|
scheduler_config["beta_end"] = beta_end |
|
scheduler_config["beta_schedule"] = "scaled_linear" |
|
scheduler_config["clip_sample"] = False |
|
scheduler_config["set_alpha_to_one"] = False |
|
|
|
|
|
if component_name == "low_res_scheduler": |
|
return cls.from_config( |
|
{ |
|
"beta_end": 0.02, |
|
"beta_schedule": "scaled_linear", |
|
"beta_start": 0.0001, |
|
"clip_sample": True, |
|
"num_train_timesteps": 1000, |
|
"prediction_type": "epsilon", |
|
"trained_betas": None, |
|
"variance_type": "fixed_small", |
|
} |
|
) |
|
|
|
if scheduler_type is None: |
|
return cls.from_config(scheduler_config) |
|
|
|
elif scheduler_type == "pndm": |
|
scheduler_config["skip_prk_steps"] = True |
|
scheduler = PNDMScheduler.from_config(scheduler_config) |
|
|
|
elif scheduler_type == "lms": |
|
scheduler = LMSDiscreteScheduler.from_config(scheduler_config) |
|
|
|
elif scheduler_type == "heun": |
|
scheduler = HeunDiscreteScheduler.from_config(scheduler_config) |
|
|
|
elif scheduler_type == "euler": |
|
scheduler = EulerDiscreteScheduler.from_config(scheduler_config) |
|
|
|
elif scheduler_type == "euler-ancestral": |
|
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config) |
|
|
|
elif scheduler_type == "dpm": |
|
scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config) |
|
|
|
elif scheduler_type == "ddim": |
|
scheduler = DDIMScheduler.from_config(scheduler_config) |
|
|
|
elif scheduler_type == "edm_dpm_solver_multistep": |
|
scheduler_config = { |
|
"algorithm_type": "dpmsolver++", |
|
"dynamic_thresholding_ratio": 0.995, |
|
"euler_at_final": False, |
|
"final_sigmas_type": "zero", |
|
"lower_order_final": True, |
|
"num_train_timesteps": 1000, |
|
"prediction_type": "epsilon", |
|
"rho": 7.0, |
|
"sample_max_value": 1.0, |
|
"sigma_data": 0.5, |
|
"sigma_max": 80.0, |
|
"sigma_min": 0.002, |
|
"solver_order": 2, |
|
"solver_type": "midpoint", |
|
"thresholding": False, |
|
} |
|
scheduler = EDMDPMSolverMultistepScheduler(**scheduler_config) |
|
|
|
else: |
|
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!") |
|
|
|
return scheduler |
|
|
|
|
|
def _legacy_load_clip_tokenizer(cls, checkpoint, config=None, local_files_only=False): |
|
if config: |
|
config = {"pretrained_model_name_or_path": config} |
|
else: |
|
config = fetch_diffusers_config(checkpoint) |
|
|
|
if is_clip_model(checkpoint) or is_clip_sdxl_model(checkpoint): |
|
clip_config = "openai/clip-vit-large-patch14" |
|
config["pretrained_model_name_or_path"] = clip_config |
|
subfolder = "" |
|
|
|
elif is_open_clip_model(checkpoint): |
|
clip_config = "stabilityai/stable-diffusion-2" |
|
config["pretrained_model_name_or_path"] = clip_config |
|
subfolder = "tokenizer" |
|
|
|
else: |
|
clip_config = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k" |
|
config["pretrained_model_name_or_path"] = clip_config |
|
subfolder = "" |
|
|
|
tokenizer = cls.from_pretrained(**config, subfolder=subfolder, local_files_only=local_files_only) |
|
|
|
return tokenizer |
|
|
|
|
|
def _legacy_load_safety_checker(local_files_only, torch_dtype): |
|
|
|
|
|
|
|
from ..pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
|
|
feature_extractor = AutoImageProcessor.from_pretrained( |
|
"CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only, torch_dtype=torch_dtype |
|
) |
|
safety_checker = StableDiffusionSafetyChecker.from_pretrained( |
|
"CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only, torch_dtype=torch_dtype |
|
) |
|
|
|
return {"safety_checker": safety_checker, "feature_extractor": feature_extractor} |
|
|
|
|
|
|
|
|
|
def swap_scale_shift(weight, dim): |
|
shift, scale = weight.chunk(2, dim=0) |
|
new_weight = torch.cat([scale, shift], dim=0) |
|
return new_weight |
|
|
|
|
|
def convert_sd3_transformer_checkpoint_to_diffusers(checkpoint, **kwargs): |
|
converted_state_dict = {} |
|
keys = list(checkpoint.keys()) |
|
for k in keys: |
|
if "model.diffusion_model." in k: |
|
checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k) |
|
|
|
num_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "joint_blocks" in k))[-1] + 1 |
|
caption_projection_dim = 1536 |
|
|
|
|
|
converted_state_dict["pos_embed.pos_embed"] = checkpoint.pop("pos_embed") |
|
converted_state_dict["pos_embed.proj.weight"] = checkpoint.pop("x_embedder.proj.weight") |
|
converted_state_dict["pos_embed.proj.bias"] = checkpoint.pop("x_embedder.proj.bias") |
|
|
|
|
|
converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = checkpoint.pop( |
|
"t_embedder.mlp.0.weight" |
|
) |
|
converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = checkpoint.pop("t_embedder.mlp.0.bias") |
|
converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = checkpoint.pop( |
|
"t_embedder.mlp.2.weight" |
|
) |
|
converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = checkpoint.pop("t_embedder.mlp.2.bias") |
|
|
|
|
|
converted_state_dict["context_embedder.weight"] = checkpoint.pop("context_embedder.weight") |
|
converted_state_dict["context_embedder.bias"] = checkpoint.pop("context_embedder.bias") |
|
|
|
|
|
converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = checkpoint.pop("y_embedder.mlp.0.weight") |
|
converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = checkpoint.pop("y_embedder.mlp.0.bias") |
|
converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = checkpoint.pop("y_embedder.mlp.2.weight") |
|
converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = checkpoint.pop("y_embedder.mlp.2.bias") |
|
|
|
|
|
for i in range(num_layers): |
|
|
|
sample_q, sample_k, sample_v = torch.chunk( |
|
checkpoint.pop(f"joint_blocks.{i}.x_block.attn.qkv.weight"), 3, dim=0 |
|
) |
|
context_q, context_k, context_v = torch.chunk( |
|
checkpoint.pop(f"joint_blocks.{i}.context_block.attn.qkv.weight"), 3, dim=0 |
|
) |
|
sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk( |
|
checkpoint.pop(f"joint_blocks.{i}.x_block.attn.qkv.bias"), 3, dim=0 |
|
) |
|
context_q_bias, context_k_bias, context_v_bias = torch.chunk( |
|
checkpoint.pop(f"joint_blocks.{i}.context_block.attn.qkv.bias"), 3, dim=0 |
|
) |
|
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_q.weight"] = torch.cat([sample_q]) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_q.bias"] = torch.cat([sample_q_bias]) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_k.weight"] = torch.cat([sample_k]) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_k.bias"] = torch.cat([sample_k_bias]) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_v.weight"] = torch.cat([sample_v]) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_v.bias"] = torch.cat([sample_v_bias]) |
|
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.weight"] = torch.cat([context_q]) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.bias"] = torch.cat([context_q_bias]) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.weight"] = torch.cat([context_k]) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.bias"] = torch.cat([context_k_bias]) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.weight"] = torch.cat([context_v]) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.bias"] = torch.cat([context_v_bias]) |
|
|
|
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.weight"] = checkpoint.pop( |
|
f"joint_blocks.{i}.x_block.attn.proj.weight" |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.bias"] = checkpoint.pop( |
|
f"joint_blocks.{i}.x_block.attn.proj.bias" |
|
) |
|
if not (i == num_layers - 1): |
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.weight"] = checkpoint.pop( |
|
f"joint_blocks.{i}.context_block.attn.proj.weight" |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.bias"] = checkpoint.pop( |
|
f"joint_blocks.{i}.context_block.attn.proj.bias" |
|
) |
|
|
|
|
|
converted_state_dict[f"transformer_blocks.{i}.norm1.linear.weight"] = checkpoint.pop( |
|
f"joint_blocks.{i}.x_block.adaLN_modulation.1.weight" |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.norm1.linear.bias"] = checkpoint.pop( |
|
f"joint_blocks.{i}.x_block.adaLN_modulation.1.bias" |
|
) |
|
if not (i == num_layers - 1): |
|
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = checkpoint.pop( |
|
f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight" |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = checkpoint.pop( |
|
f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias" |
|
) |
|
else: |
|
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = swap_scale_shift( |
|
checkpoint.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight"), |
|
dim=caption_projection_dim, |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = swap_scale_shift( |
|
checkpoint.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias"), |
|
dim=caption_projection_dim, |
|
) |
|
|
|
|
|
converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.weight"] = checkpoint.pop( |
|
f"joint_blocks.{i}.x_block.mlp.fc1.weight" |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.bias"] = checkpoint.pop( |
|
f"joint_blocks.{i}.x_block.mlp.fc1.bias" |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.ff.net.2.weight"] = checkpoint.pop( |
|
f"joint_blocks.{i}.x_block.mlp.fc2.weight" |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.ff.net.2.bias"] = checkpoint.pop( |
|
f"joint_blocks.{i}.x_block.mlp.fc2.bias" |
|
) |
|
if not (i == num_layers - 1): |
|
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.weight"] = checkpoint.pop( |
|
f"joint_blocks.{i}.context_block.mlp.fc1.weight" |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.bias"] = checkpoint.pop( |
|
f"joint_blocks.{i}.context_block.mlp.fc1.bias" |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.weight"] = checkpoint.pop( |
|
f"joint_blocks.{i}.context_block.mlp.fc2.weight" |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.bias"] = checkpoint.pop( |
|
f"joint_blocks.{i}.context_block.mlp.fc2.bias" |
|
) |
|
|
|
|
|
converted_state_dict["proj_out.weight"] = checkpoint.pop("final_layer.linear.weight") |
|
converted_state_dict["proj_out.bias"] = checkpoint.pop("final_layer.linear.bias") |
|
converted_state_dict["norm_out.linear.weight"] = swap_scale_shift( |
|
checkpoint.pop("final_layer.adaLN_modulation.1.weight"), dim=caption_projection_dim |
|
) |
|
converted_state_dict["norm_out.linear.bias"] = swap_scale_shift( |
|
checkpoint.pop("final_layer.adaLN_modulation.1.bias"), dim=caption_projection_dim |
|
) |
|
|
|
return converted_state_dict |
|
|
|
|
|
def is_t5_in_single_file(checkpoint): |
|
if "text_encoders.t5xxl.transformer.shared.weight" in checkpoint: |
|
return True |
|
|
|
return False |
|
|
|
|
|
def convert_sd3_t5_checkpoint_to_diffusers(checkpoint): |
|
keys = list(checkpoint.keys()) |
|
text_model_dict = {} |
|
|
|
remove_prefixes = ["text_encoders.t5xxl.transformer."] |
|
|
|
for key in keys: |
|
for prefix in remove_prefixes: |
|
if key.startswith(prefix): |
|
diffusers_key = key.replace(prefix, "") |
|
text_model_dict[diffusers_key] = checkpoint.get(key) |
|
|
|
return text_model_dict |
|
|
|
|
|
def create_diffusers_t5_model_from_checkpoint( |
|
cls, |
|
checkpoint, |
|
subfolder="", |
|
config=None, |
|
torch_dtype=None, |
|
local_files_only=None, |
|
): |
|
if config: |
|
config = {"pretrained_model_name_or_path": config} |
|
else: |
|
config = fetch_diffusers_config(checkpoint) |
|
|
|
model_config = cls.config_class.from_pretrained(**config, subfolder=subfolder, local_files_only=local_files_only) |
|
ctx = init_empty_weights if is_accelerate_available() else nullcontext |
|
with ctx(): |
|
model = cls(model_config) |
|
|
|
diffusers_format_checkpoint = convert_sd3_t5_checkpoint_to_diffusers(checkpoint) |
|
|
|
if is_accelerate_available(): |
|
unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype) |
|
if model._keys_to_ignore_on_load_unexpected is not None: |
|
for pat in model._keys_to_ignore_on_load_unexpected: |
|
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] |
|
|
|
if len(unexpected_keys) > 0: |
|
logger.warning( |
|
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" |
|
) |
|
|
|
else: |
|
model.load_state_dict(diffusers_format_checkpoint) |
|
return model |
|
|