|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from ..utils import deprecate |
|
from ..utils.import_utils import is_torch_npu_available |
|
|
|
|
|
if is_torch_npu_available(): |
|
import torch_npu |
|
|
|
ACTIVATION_FUNCTIONS = { |
|
"swish": nn.SiLU(), |
|
"silu": nn.SiLU(), |
|
"mish": nn.Mish(), |
|
"gelu": nn.GELU(), |
|
"relu": nn.ReLU(), |
|
} |
|
|
|
|
|
def get_activation(act_fn: str) -> nn.Module: |
|
"""Helper function to get activation function from string. |
|
|
|
Args: |
|
act_fn (str): Name of activation function. |
|
|
|
Returns: |
|
nn.Module: Activation function. |
|
""" |
|
|
|
act_fn = act_fn.lower() |
|
if act_fn in ACTIVATION_FUNCTIONS: |
|
return ACTIVATION_FUNCTIONS[act_fn] |
|
else: |
|
raise ValueError(f"Unsupported activation function: {act_fn}") |
|
|
|
|
|
class FP32SiLU(nn.Module): |
|
r""" |
|
SiLU activation function with input upcasted to torch.float32. |
|
""" |
|
|
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, inputs: torch.Tensor) -> torch.Tensor: |
|
return F.silu(inputs.float(), inplace=False).to(inputs.dtype) |
|
|
|
|
|
class GELU(nn.Module): |
|
r""" |
|
GELU activation function with tanh approximation support with `approximate="tanh"`. |
|
|
|
Parameters: |
|
dim_in (`int`): The number of channels in the input. |
|
dim_out (`int`): The number of channels in the output. |
|
approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation. |
|
bias (`bool`, defaults to True): Whether to use a bias in the linear layer. |
|
""" |
|
|
|
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out, bias=bias) |
|
self.approximate = approximate |
|
|
|
def gelu(self, gate: torch.Tensor) -> torch.Tensor: |
|
if gate.device.type != "mps": |
|
return F.gelu(gate, approximate=self.approximate) |
|
|
|
return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.proj(hidden_states) |
|
hidden_states = self.gelu(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class GEGLU(nn.Module): |
|
r""" |
|
A [variant](https://arxiv.org/abs/2002.05202) of the gated linear unit activation function. |
|
|
|
Parameters: |
|
dim_in (`int`): The number of channels in the input. |
|
dim_out (`int`): The number of channels in the output. |
|
bias (`bool`, defaults to True): Whether to use a bias in the linear layer. |
|
""" |
|
|
|
def __init__(self, dim_in: int, dim_out: int, bias: bool = True): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias) |
|
|
|
def gelu(self, gate: torch.Tensor) -> torch.Tensor: |
|
if gate.device.type != "mps": |
|
return F.gelu(gate) |
|
|
|
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) |
|
|
|
def forward(self, hidden_states, *args, **kwargs): |
|
if len(args) > 0 or kwargs.get("scale", None) is not None: |
|
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." |
|
deprecate("scale", "1.0.0", deprecation_message) |
|
hidden_states = self.proj(hidden_states) |
|
if is_torch_npu_available(): |
|
|
|
return torch_npu.npu_geglu(hidden_states, dim=-1, approximate=1)[0] |
|
else: |
|
hidden_states, gate = hidden_states.chunk(2, dim=-1) |
|
return hidden_states * self.gelu(gate) |
|
|
|
|
|
class ApproximateGELU(nn.Module): |
|
r""" |
|
The approximate form of the Gaussian Error Linear Unit (GELU). For more details, see section 2 of this |
|
[paper](https://arxiv.org/abs/1606.08415). |
|
|
|
Parameters: |
|
dim_in (`int`): The number of channels in the input. |
|
dim_out (`int`): The number of channels in the output. |
|
bias (`bool`, defaults to True): Whether to use a bias in the linear layer. |
|
""" |
|
|
|
def __init__(self, dim_in: int, dim_out: int, bias: bool = True): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out, bias=bias) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.proj(x) |
|
return x * torch.sigmoid(1.702 * x) |
|
|