|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import itertools |
|
import json |
|
import os |
|
import re |
|
from collections import OrderedDict |
|
from functools import partial |
|
from pathlib import Path |
|
from typing import Any, Callable, List, Optional, Tuple, Union |
|
|
|
import safetensors |
|
import torch |
|
from huggingface_hub import create_repo, split_torch_state_dict_into_shards |
|
from huggingface_hub.utils import validate_hf_hub_args |
|
from torch import Tensor, nn |
|
|
|
from .. import __version__ |
|
from ..utils import ( |
|
CONFIG_NAME, |
|
FLAX_WEIGHTS_NAME, |
|
SAFE_WEIGHTS_INDEX_NAME, |
|
SAFETENSORS_WEIGHTS_NAME, |
|
WEIGHTS_INDEX_NAME, |
|
WEIGHTS_NAME, |
|
_add_variant, |
|
_get_checkpoint_shard_files, |
|
_get_model_file, |
|
deprecate, |
|
is_accelerate_available, |
|
is_torch_version, |
|
logging, |
|
) |
|
from ..utils.hub_utils import ( |
|
PushToHubMixin, |
|
load_or_create_model_card, |
|
populate_model_card, |
|
) |
|
from .model_loading_utils import ( |
|
_determine_device_map, |
|
_fetch_index_file, |
|
_load_state_dict_into_model, |
|
load_model_dict_into_meta, |
|
load_state_dict, |
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_REGEX_SHARD = re.compile(r"(.*?)-\d{5}-of-\d{5}") |
|
|
|
|
|
if is_torch_version(">=", "1.9.0"): |
|
_LOW_CPU_MEM_USAGE_DEFAULT = True |
|
else: |
|
_LOW_CPU_MEM_USAGE_DEFAULT = False |
|
|
|
|
|
if is_accelerate_available(): |
|
import accelerate |
|
|
|
|
|
def get_parameter_device(parameter: torch.nn.Module) -> torch.device: |
|
try: |
|
parameters_and_buffers = itertools.chain(parameter.parameters(), parameter.buffers()) |
|
return next(parameters_and_buffers).device |
|
except StopIteration: |
|
|
|
|
|
def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]: |
|
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] |
|
return tuples |
|
|
|
gen = parameter._named_members(get_members_fn=find_tensor_attributes) |
|
first_tuple = next(gen) |
|
return first_tuple[1].device |
|
|
|
|
|
def get_parameter_dtype(parameter: torch.nn.Module) -> torch.dtype: |
|
try: |
|
params = tuple(parameter.parameters()) |
|
if len(params) > 0: |
|
return params[0].dtype |
|
|
|
buffers = tuple(parameter.buffers()) |
|
if len(buffers) > 0: |
|
return buffers[0].dtype |
|
|
|
except StopIteration: |
|
|
|
|
|
def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]: |
|
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] |
|
return tuples |
|
|
|
gen = parameter._named_members(get_members_fn=find_tensor_attributes) |
|
first_tuple = next(gen) |
|
return first_tuple[1].dtype |
|
|
|
|
|
class ModelMixin(torch.nn.Module, PushToHubMixin): |
|
r""" |
|
Base class for all models. |
|
|
|
[`ModelMixin`] takes care of storing the model configuration and provides methods for loading, downloading and |
|
saving models. |
|
|
|
- **config_name** ([`str`]) -- Filename to save a model to when calling [`~models.ModelMixin.save_pretrained`]. |
|
""" |
|
|
|
config_name = CONFIG_NAME |
|
_automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"] |
|
_supports_gradient_checkpointing = False |
|
_keys_to_ignore_on_load_unexpected = None |
|
_no_split_modules = None |
|
|
|
def __init__(self): |
|
super().__init__() |
|
|
|
def __getattr__(self, name: str) -> Any: |
|
"""The only reason we overwrite `getattr` here is to gracefully deprecate accessing |
|
config attributes directly. See https://github.com/huggingface/diffusers/pull/3129 We need to overwrite |
|
__getattr__ here in addition so that we don't trigger `torch.nn.Module`'s __getattr__': |
|
https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module |
|
""" |
|
|
|
is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name) |
|
is_attribute = name in self.__dict__ |
|
|
|
if is_in_config and not is_attribute: |
|
deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'unet.config.{name}'." |
|
deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False, stacklevel=3) |
|
return self._internal_dict[name] |
|
|
|
|
|
return super().__getattr__(name) |
|
|
|
@property |
|
def is_gradient_checkpointing(self) -> bool: |
|
""" |
|
Whether gradient checkpointing is activated for this model or not. |
|
""" |
|
return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules()) |
|
|
|
def enable_gradient_checkpointing(self) -> None: |
|
""" |
|
Activates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or |
|
*checkpoint activations* in other frameworks). |
|
""" |
|
if not self._supports_gradient_checkpointing: |
|
raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.") |
|
self.apply(partial(self._set_gradient_checkpointing, value=True)) |
|
|
|
def disable_gradient_checkpointing(self) -> None: |
|
""" |
|
Deactivates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or |
|
*checkpoint activations* in other frameworks). |
|
""" |
|
if self._supports_gradient_checkpointing: |
|
self.apply(partial(self._set_gradient_checkpointing, value=False)) |
|
|
|
def set_use_npu_flash_attention(self, valid: bool) -> None: |
|
r""" |
|
Set the switch for the npu flash attention. |
|
""" |
|
|
|
def fn_recursive_set_npu_flash_attention(module: torch.nn.Module): |
|
if hasattr(module, "set_use_npu_flash_attention"): |
|
module.set_use_npu_flash_attention(valid) |
|
|
|
for child in module.children(): |
|
fn_recursive_set_npu_flash_attention(child) |
|
|
|
for module in self.children(): |
|
if isinstance(module, torch.nn.Module): |
|
fn_recursive_set_npu_flash_attention(module) |
|
|
|
def enable_npu_flash_attention(self) -> None: |
|
r""" |
|
Enable npu flash attention from torch_npu |
|
|
|
""" |
|
self.set_use_npu_flash_attention(True) |
|
|
|
def disable_npu_flash_attention(self) -> None: |
|
r""" |
|
disable npu flash attention from torch_npu |
|
|
|
""" |
|
self.set_use_npu_flash_attention(False) |
|
|
|
def set_use_memory_efficient_attention_xformers( |
|
self, valid: bool, attention_op: Optional[Callable] = None |
|
) -> None: |
|
|
|
|
|
|
|
def fn_recursive_set_mem_eff(module: torch.nn.Module): |
|
if hasattr(module, "set_use_memory_efficient_attention_xformers"): |
|
module.set_use_memory_efficient_attention_xformers(valid, attention_op) |
|
|
|
for child in module.children(): |
|
fn_recursive_set_mem_eff(child) |
|
|
|
for module in self.children(): |
|
if isinstance(module, torch.nn.Module): |
|
fn_recursive_set_mem_eff(module) |
|
|
|
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None) -> None: |
|
r""" |
|
Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). |
|
|
|
When this option is enabled, you should observe lower GPU memory usage and a potential speed up during |
|
inference. Speed up during training is not guaranteed. |
|
|
|
<Tip warning={true}> |
|
|
|
⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes |
|
precedent. |
|
|
|
</Tip> |
|
|
|
Parameters: |
|
attention_op (`Callable`, *optional*): |
|
Override the default `None` operator for use as `op` argument to the |
|
[`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention) |
|
function of xFormers. |
|
|
|
Examples: |
|
|
|
```py |
|
>>> import torch |
|
>>> from diffusers import UNet2DConditionModel |
|
>>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp |
|
|
|
>>> model = UNet2DConditionModel.from_pretrained( |
|
... "stabilityai/stable-diffusion-2-1", subfolder="unet", torch_dtype=torch.float16 |
|
... ) |
|
>>> model = model.to("cuda") |
|
>>> model.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp) |
|
``` |
|
""" |
|
self.set_use_memory_efficient_attention_xformers(True, attention_op) |
|
|
|
def disable_xformers_memory_efficient_attention(self) -> None: |
|
r""" |
|
Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). |
|
""" |
|
self.set_use_memory_efficient_attention_xformers(False) |
|
|
|
def save_pretrained( |
|
self, |
|
save_directory: Union[str, os.PathLike], |
|
is_main_process: bool = True, |
|
save_function: Optional[Callable] = None, |
|
safe_serialization: bool = True, |
|
variant: Optional[str] = None, |
|
max_shard_size: Union[int, str] = "10GB", |
|
push_to_hub: bool = False, |
|
**kwargs, |
|
): |
|
""" |
|
Save a model and its configuration file to a directory so that it can be reloaded using the |
|
[`~models.ModelMixin.from_pretrained`] class method. |
|
|
|
Arguments: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory to save a model and its configuration file to. Will be created if it doesn't exist. |
|
is_main_process (`bool`, *optional*, defaults to `True`): |
|
Whether the process calling this is the main process or not. Useful during distributed training and you |
|
need to call this function on all processes. In this case, set `is_main_process=True` only on the main |
|
process to avoid race conditions. |
|
save_function (`Callable`): |
|
The function to use to save the state dictionary. Useful during distributed training when you need to |
|
replace `torch.save` with another method. Can be configured with the environment variable |
|
`DIFFUSERS_SAVE_MODE`. |
|
safe_serialization (`bool`, *optional*, defaults to `True`): |
|
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. |
|
variant (`str`, *optional*): |
|
If specified, weights are saved in the format `pytorch_model.<variant>.bin`. |
|
max_shard_size (`int` or `str`, defaults to `"10GB"`): |
|
The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size |
|
lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5GB"`). |
|
If expressed as an integer, the unit is bytes. Note that this limit will be decreased after a certain |
|
period of time (starting from Oct 2024) to allow users to upgrade to the latest version of `diffusers`. |
|
This is to establish a common default size for this argument across different libraries in the Hugging |
|
Face ecosystem (`transformers`, and `accelerate`, for example). |
|
push_to_hub (`bool`, *optional*, defaults to `False`): |
|
Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the |
|
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your |
|
namespace). |
|
kwargs (`Dict[str, Any]`, *optional*): |
|
Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. |
|
""" |
|
if os.path.isfile(save_directory): |
|
logger.error(f"Provided path ({save_directory}) should be a directory, not a file") |
|
return |
|
|
|
weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME |
|
weights_name = _add_variant(weights_name, variant) |
|
weight_name_split = weights_name.split(".") |
|
if len(weight_name_split) in [2, 3]: |
|
weights_name_pattern = weight_name_split[0] + "{suffix}." + ".".join(weight_name_split[1:]) |
|
else: |
|
raise ValueError(f"Invalid {weights_name} provided.") |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
if push_to_hub: |
|
commit_message = kwargs.pop("commit_message", None) |
|
private = kwargs.pop("private", False) |
|
create_pr = kwargs.pop("create_pr", False) |
|
token = kwargs.pop("token", None) |
|
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) |
|
repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id |
|
|
|
|
|
model_to_save = self |
|
|
|
|
|
|
|
if is_main_process: |
|
model_to_save.save_config(save_directory) |
|
|
|
|
|
state_dict = model_to_save.state_dict() |
|
|
|
|
|
state_dict_split = split_torch_state_dict_into_shards( |
|
state_dict, max_shard_size=max_shard_size, filename_pattern=weights_name_pattern |
|
) |
|
|
|
|
|
if is_main_process: |
|
for filename in os.listdir(save_directory): |
|
if filename in state_dict_split.filename_to_tensors.keys(): |
|
continue |
|
full_filename = os.path.join(save_directory, filename) |
|
if not os.path.isfile(full_filename): |
|
continue |
|
weights_without_ext = weights_name_pattern.replace(".bin", "").replace(".safetensors", "") |
|
weights_without_ext = weights_without_ext.replace("{suffix}", "") |
|
filename_without_ext = filename.replace(".bin", "").replace(".safetensors", "") |
|
|
|
if ( |
|
filename.startswith(weights_without_ext) |
|
and _REGEX_SHARD.fullmatch(filename_without_ext) is not None |
|
): |
|
os.remove(full_filename) |
|
|
|
for filename, tensors in state_dict_split.filename_to_tensors.items(): |
|
shard = {tensor: state_dict[tensor] for tensor in tensors} |
|
filepath = os.path.join(save_directory, filename) |
|
if safe_serialization: |
|
|
|
|
|
safetensors.torch.save_file(shard, filepath, metadata={"format": "pt"}) |
|
else: |
|
torch.save(shard, filepath) |
|
|
|
if state_dict_split.is_sharded: |
|
index = { |
|
"metadata": state_dict_split.metadata, |
|
"weight_map": state_dict_split.tensor_to_filename, |
|
} |
|
save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME |
|
save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant)) |
|
|
|
with open(save_index_file, "w", encoding="utf-8") as f: |
|
content = json.dumps(index, indent=2, sort_keys=True) + "\n" |
|
f.write(content) |
|
logger.info( |
|
f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be " |
|
f"split in {len(state_dict_split.filename_to_tensors)} checkpoint shards. You can find where each parameters has been saved in the " |
|
f"index located at {save_index_file}." |
|
) |
|
else: |
|
path_to_weights = os.path.join(save_directory, weights_name) |
|
logger.info(f"Model weights saved in {path_to_weights}") |
|
|
|
if push_to_hub: |
|
|
|
model_card = load_or_create_model_card(repo_id, token=token) |
|
model_card = populate_model_card(model_card) |
|
model_card.save(Path(save_directory, "README.md").as_posix()) |
|
|
|
self._upload_folder( |
|
save_directory, |
|
repo_id, |
|
token=token, |
|
commit_message=commit_message, |
|
create_pr=create_pr, |
|
) |
|
|
|
@classmethod |
|
@validate_hf_hub_args |
|
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): |
|
r""" |
|
Instantiate a pretrained PyTorch model from a pretrained model configuration. |
|
|
|
The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To |
|
train the model, set it back in training mode with `model.train()`. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): |
|
Can be either: |
|
|
|
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on |
|
the Hub. |
|
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved |
|
with [`~ModelMixin.save_pretrained`]. |
|
|
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache |
|
is not used. |
|
torch_dtype (`str` or `torch.dtype`, *optional*): |
|
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the |
|
dtype is automatically derived from the model's weights. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download: |
|
Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1 |
|
of Diffusers. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
output_loading_info (`bool`, *optional*, defaults to `False`): |
|
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. |
|
local_files_only(`bool`, *optional*, defaults to `False`): |
|
Whether to only load local model weights and configuration files or not. If set to `True`, the model |
|
won't be downloaded from the Hub. |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from |
|
`diffusers-cli login` (stored in `~/.huggingface`) is used. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier |
|
allowed by Git. |
|
from_flax (`bool`, *optional*, defaults to `False`): |
|
Load the model weights from a Flax checkpoint save file. |
|
subfolder (`str`, *optional*, defaults to `""`): |
|
The subfolder location of a model file within a larger model repository on the Hub or locally. |
|
mirror (`str`, *optional*): |
|
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not |
|
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more |
|
information. |
|
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): |
|
A map that specifies where each submodule should go. It doesn't need to be defined for each |
|
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the |
|
same device. Defaults to `None`, meaning that the model will be loaded on CPU. |
|
|
|
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For |
|
more information about each option see [designing a device |
|
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). |
|
max_memory (`Dict`, *optional*): |
|
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for |
|
each GPU and the available CPU RAM if unset. |
|
offload_folder (`str` or `os.PathLike`, *optional*): |
|
The path to offload weights if `device_map` contains the value `"disk"`. |
|
offload_state_dict (`bool`, *optional*): |
|
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if |
|
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True` |
|
when there is some disk offload. |
|
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): |
|
Speed up model loading only loading the pretrained weights and not initializing the weights. This also |
|
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. |
|
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this |
|
argument to `True` will raise an error. |
|
variant (`str`, *optional*): |
|
Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when |
|
loading `from_flax`. |
|
use_safetensors (`bool`, *optional*, defaults to `None`): |
|
If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the |
|
`safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors` |
|
weights. If set to `False`, `safetensors` weights are not loaded. |
|
|
|
<Tip> |
|
|
|
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with |
|
`huggingface-cli login`. You can also activate the special |
|
["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a |
|
firewalled environment. |
|
|
|
</Tip> |
|
|
|
Example: |
|
|
|
```py |
|
from diffusers import UNet2DConditionModel |
|
|
|
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet") |
|
``` |
|
|
|
If you get the error message below, you need to finetune the weights for your downstream task: |
|
|
|
```bash |
|
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: |
|
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated |
|
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. |
|
``` |
|
""" |
|
cache_dir = kwargs.pop("cache_dir", None) |
|
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False) |
|
force_download = kwargs.pop("force_download", False) |
|
from_flax = kwargs.pop("from_flax", False) |
|
resume_download = kwargs.pop("resume_download", None) |
|
proxies = kwargs.pop("proxies", None) |
|
output_loading_info = kwargs.pop("output_loading_info", False) |
|
local_files_only = kwargs.pop("local_files_only", None) |
|
token = kwargs.pop("token", None) |
|
revision = kwargs.pop("revision", None) |
|
torch_dtype = kwargs.pop("torch_dtype", None) |
|
subfolder = kwargs.pop("subfolder", None) |
|
device_map = kwargs.pop("device_map", None) |
|
max_memory = kwargs.pop("max_memory", None) |
|
offload_folder = kwargs.pop("offload_folder", None) |
|
offload_state_dict = kwargs.pop("offload_state_dict", False) |
|
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT) |
|
variant = kwargs.pop("variant", None) |
|
use_safetensors = kwargs.pop("use_safetensors", None) |
|
|
|
allow_pickle = False |
|
if use_safetensors is None: |
|
use_safetensors = True |
|
allow_pickle = True |
|
|
|
if low_cpu_mem_usage and not is_accelerate_available(): |
|
low_cpu_mem_usage = False |
|
logger.warning( |
|
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" |
|
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" |
|
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" |
|
" install accelerate\n```\n." |
|
) |
|
|
|
if device_map is not None and not is_accelerate_available(): |
|
raise NotImplementedError( |
|
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set" |
|
" `device_map=None`. You can install accelerate with `pip install accelerate`." |
|
) |
|
|
|
|
|
if device_map is not None and not is_torch_version(">=", "1.9.0"): |
|
raise NotImplementedError( |
|
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set" |
|
" `device_map=None`." |
|
) |
|
|
|
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): |
|
raise NotImplementedError( |
|
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" |
|
" `low_cpu_mem_usage=False`." |
|
) |
|
|
|
if low_cpu_mem_usage is False and device_map is not None: |
|
raise ValueError( |
|
f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and" |
|
" dispatching. Please make sure to set `low_cpu_mem_usage=True`." |
|
) |
|
|
|
|
|
if isinstance(device_map, torch.device): |
|
device_map = {"": device_map} |
|
elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: |
|
try: |
|
device_map = {"": torch.device(device_map)} |
|
except RuntimeError: |
|
raise ValueError( |
|
"When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or " |
|
f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}." |
|
) |
|
elif isinstance(device_map, int): |
|
if device_map < 0: |
|
raise ValueError( |
|
"You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' " |
|
) |
|
else: |
|
device_map = {"": device_map} |
|
|
|
if device_map is not None: |
|
if low_cpu_mem_usage is None: |
|
low_cpu_mem_usage = True |
|
elif not low_cpu_mem_usage: |
|
raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`") |
|
|
|
if low_cpu_mem_usage: |
|
if device_map is not None and not is_torch_version(">=", "1.10"): |
|
|
|
raise ValueError("`low_cpu_mem_usage` and `device_map` require PyTorch >= 1.10.") |
|
|
|
|
|
config_path = pretrained_model_name_or_path |
|
|
|
user_agent = { |
|
"diffusers": __version__, |
|
"file_type": "model", |
|
"framework": "pytorch", |
|
} |
|
|
|
|
|
config, unused_kwargs, commit_hash = cls.load_config( |
|
config_path, |
|
cache_dir=cache_dir, |
|
return_unused_kwargs=True, |
|
return_commit_hash=True, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
**kwargs, |
|
) |
|
|
|
|
|
is_sharded = False |
|
index_file = None |
|
is_local = os.path.isdir(pretrained_model_name_or_path) |
|
index_file = _fetch_index_file( |
|
is_local=is_local, |
|
pretrained_model_name_or_path=pretrained_model_name_or_path, |
|
subfolder=subfolder or "", |
|
use_safetensors=use_safetensors, |
|
cache_dir=cache_dir, |
|
variant=variant, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
user_agent=user_agent, |
|
commit_hash=commit_hash, |
|
) |
|
if index_file is not None and index_file.is_file(): |
|
is_sharded = True |
|
|
|
if is_sharded and from_flax: |
|
raise ValueError("Loading of sharded checkpoints is not supported when `from_flax=True`.") |
|
|
|
|
|
model_file = None |
|
if from_flax: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path, |
|
weights_name=FLAX_WEIGHTS_NAME, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
commit_hash=commit_hash, |
|
) |
|
model = cls.from_config(config, **unused_kwargs) |
|
|
|
|
|
from .modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model |
|
|
|
model = load_flax_checkpoint_in_pytorch_model(model, model_file) |
|
else: |
|
if is_sharded: |
|
sharded_ckpt_cached_folder, sharded_metadata = _get_checkpoint_shard_files( |
|
pretrained_model_name_or_path, |
|
index_file, |
|
cache_dir=cache_dir, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
local_files_only=local_files_only, |
|
token=token, |
|
user_agent=user_agent, |
|
revision=revision, |
|
subfolder=subfolder or "", |
|
) |
|
|
|
elif use_safetensors and not is_sharded: |
|
try: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path, |
|
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant), |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
commit_hash=commit_hash, |
|
) |
|
|
|
except IOError as e: |
|
logger.error(f"An error occurred while trying to fetch {pretrained_model_name_or_path}: {e}") |
|
if not allow_pickle: |
|
raise |
|
logger.warning( |
|
"Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead." |
|
) |
|
|
|
if model_file is None and not is_sharded: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path, |
|
weights_name=_add_variant(WEIGHTS_NAME, variant), |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
commit_hash=commit_hash, |
|
) |
|
|
|
if low_cpu_mem_usage: |
|
|
|
with accelerate.init_empty_weights(): |
|
model = cls.from_config(config, **unused_kwargs) |
|
|
|
|
|
if device_map is None and not is_sharded: |
|
param_device = "cpu" |
|
state_dict = load_state_dict(model_file, variant=variant) |
|
model._convert_deprecated_attention_blocks(state_dict) |
|
|
|
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) |
|
if len(missing_keys) > 0: |
|
raise ValueError( |
|
f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are" |
|
f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass" |
|
" `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize" |
|
" those weights or else make sure your checkpoint file is correct." |
|
) |
|
|
|
unexpected_keys = load_model_dict_into_meta( |
|
model, |
|
state_dict, |
|
device=param_device, |
|
dtype=torch_dtype, |
|
model_name_or_path=pretrained_model_name_or_path, |
|
) |
|
|
|
if cls._keys_to_ignore_on_load_unexpected is not None: |
|
for pat in cls._keys_to_ignore_on_load_unexpected: |
|
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] |
|
|
|
if len(unexpected_keys) > 0: |
|
logger.warning( |
|
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" |
|
) |
|
|
|
else: |
|
|
|
|
|
force_hook = True |
|
device_map = _determine_device_map(model, device_map, max_memory, torch_dtype) |
|
if device_map is None and is_sharded: |
|
|
|
device_map = {"": "cpu"} |
|
force_hook = False |
|
try: |
|
accelerate.load_checkpoint_and_dispatch( |
|
model, |
|
model_file if not is_sharded else sharded_ckpt_cached_folder, |
|
device_map, |
|
max_memory=max_memory, |
|
offload_folder=offload_folder, |
|
offload_state_dict=offload_state_dict, |
|
dtype=torch_dtype, |
|
force_hooks=force_hook, |
|
strict=True, |
|
) |
|
except AttributeError as e: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if "'Attention' object has no attribute" in str(e): |
|
logger.warning( |
|
f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}" |
|
" was saved with deprecated attention block weight names. We will load it with the deprecated attention block" |
|
" names and convert them on the fly to the new attention block format. Please re-save the model after this conversion," |
|
" so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint," |
|
" please also re-upload it or open a PR on the original repository." |
|
) |
|
model._temp_convert_self_to_deprecated_attention_blocks() |
|
accelerate.load_checkpoint_and_dispatch( |
|
model, |
|
model_file if not is_sharded else sharded_ckpt_cached_folder, |
|
device_map, |
|
max_memory=max_memory, |
|
offload_folder=offload_folder, |
|
offload_state_dict=offload_state_dict, |
|
dtype=torch_dtype, |
|
force_hooks=force_hook, |
|
strict=True, |
|
) |
|
model._undo_temp_convert_self_to_deprecated_attention_blocks() |
|
else: |
|
raise e |
|
|
|
loading_info = { |
|
"missing_keys": [], |
|
"unexpected_keys": [], |
|
"mismatched_keys": [], |
|
"error_msgs": [], |
|
} |
|
else: |
|
model = cls.from_config(config, **unused_kwargs) |
|
|
|
state_dict = load_state_dict(model_file, variant=variant) |
|
model._convert_deprecated_attention_blocks(state_dict) |
|
|
|
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model( |
|
model, |
|
state_dict, |
|
model_file, |
|
pretrained_model_name_or_path, |
|
ignore_mismatched_sizes=ignore_mismatched_sizes, |
|
) |
|
|
|
loading_info = { |
|
"missing_keys": missing_keys, |
|
"unexpected_keys": unexpected_keys, |
|
"mismatched_keys": mismatched_keys, |
|
"error_msgs": error_msgs, |
|
} |
|
|
|
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype): |
|
raise ValueError( |
|
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}." |
|
) |
|
elif torch_dtype is not None: |
|
model = model.to(torch_dtype) |
|
|
|
model.register_to_config(_name_or_path=pretrained_model_name_or_path) |
|
|
|
|
|
model.eval() |
|
if output_loading_info: |
|
return model, loading_info |
|
|
|
return model |
|
|
|
@classmethod |
|
def _load_pretrained_model( |
|
cls, |
|
model, |
|
state_dict: OrderedDict, |
|
resolved_archive_file, |
|
pretrained_model_name_or_path: Union[str, os.PathLike], |
|
ignore_mismatched_sizes: bool = False, |
|
): |
|
|
|
model_state_dict = model.state_dict() |
|
loaded_keys = list(state_dict.keys()) |
|
|
|
expected_keys = list(model_state_dict.keys()) |
|
|
|
original_loaded_keys = loaded_keys |
|
|
|
missing_keys = list(set(expected_keys) - set(loaded_keys)) |
|
unexpected_keys = list(set(loaded_keys) - set(expected_keys)) |
|
|
|
|
|
model_to_load = model |
|
|
|
def _find_mismatched_keys( |
|
state_dict, |
|
model_state_dict, |
|
loaded_keys, |
|
ignore_mismatched_sizes, |
|
): |
|
mismatched_keys = [] |
|
if ignore_mismatched_sizes: |
|
for checkpoint_key in loaded_keys: |
|
model_key = checkpoint_key |
|
|
|
if ( |
|
model_key in model_state_dict |
|
and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape |
|
): |
|
mismatched_keys.append( |
|
(checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape) |
|
) |
|
del state_dict[checkpoint_key] |
|
return mismatched_keys |
|
|
|
if state_dict is not None: |
|
|
|
mismatched_keys = _find_mismatched_keys( |
|
state_dict, |
|
model_state_dict, |
|
original_loaded_keys, |
|
ignore_mismatched_sizes, |
|
) |
|
error_msgs = _load_state_dict_into_model(model_to_load, state_dict) |
|
|
|
if len(error_msgs) > 0: |
|
error_msg = "\n\t".join(error_msgs) |
|
if "size mismatch" in error_msg: |
|
error_msg += ( |
|
"\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method." |
|
) |
|
raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}") |
|
|
|
if len(unexpected_keys) > 0: |
|
logger.warning( |
|
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when" |
|
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are" |
|
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task" |
|
" or with another architecture (e.g. initializing a BertForSequenceClassification model from a" |
|
" BertForPreTraining model).\n- This IS NOT expected if you are initializing" |
|
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly" |
|
" identical (initializing a BertForSequenceClassification model from a" |
|
" BertForSequenceClassification model)." |
|
) |
|
else: |
|
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n") |
|
if len(missing_keys) > 0: |
|
logger.warning( |
|
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" |
|
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably" |
|
" TRAIN this model on a down-stream task to be able to use it for predictions and inference." |
|
) |
|
elif len(mismatched_keys) == 0: |
|
logger.info( |
|
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at" |
|
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the" |
|
f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions" |
|
" without further training." |
|
) |
|
if len(mismatched_keys) > 0: |
|
mismatched_warning = "\n".join( |
|
[ |
|
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated" |
|
for key, shape1, shape2 in mismatched_keys |
|
] |
|
) |
|
logger.warning( |
|
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" |
|
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not" |
|
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be" |
|
" able to use it for predictions and inference." |
|
) |
|
|
|
return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs |
|
|
|
@classmethod |
|
def _get_signature_keys(cls, obj): |
|
parameters = inspect.signature(obj.__init__).parameters |
|
required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty} |
|
optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty}) |
|
expected_modules = set(required_parameters.keys()) - {"self"} |
|
|
|
return expected_modules, optional_parameters |
|
|
|
|
|
def _get_no_split_modules(self, device_map: str): |
|
""" |
|
Get the modules of the model that should not be spit when using device_map. We iterate through the modules to |
|
get the underlying `_no_split_modules`. |
|
|
|
Args: |
|
device_map (`str`): |
|
The device map value. Options are ["auto", "balanced", "balanced_low_0", "sequential"] |
|
|
|
Returns: |
|
`List[str]`: List of modules that should not be split |
|
""" |
|
_no_split_modules = set() |
|
modules_to_check = [self] |
|
while len(modules_to_check) > 0: |
|
module = modules_to_check.pop(-1) |
|
|
|
if module.__class__.__name__ not in _no_split_modules: |
|
if isinstance(module, ModelMixin): |
|
if module._no_split_modules is None: |
|
raise ValueError( |
|
f"{module.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model " |
|
"class needs to implement the `_no_split_modules` attribute." |
|
) |
|
else: |
|
_no_split_modules = _no_split_modules | set(module._no_split_modules) |
|
modules_to_check += list(module.children()) |
|
return list(_no_split_modules) |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
""" |
|
`torch.device`: The device on which the module is (assuming that all the module parameters are on the same |
|
device). |
|
""" |
|
return get_parameter_device(self) |
|
|
|
@property |
|
def dtype(self) -> torch.dtype: |
|
""" |
|
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). |
|
""" |
|
return get_parameter_dtype(self) |
|
|
|
def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int: |
|
""" |
|
Get number of (trainable or non-embedding) parameters in the module. |
|
|
|
Args: |
|
only_trainable (`bool`, *optional*, defaults to `False`): |
|
Whether or not to return only the number of trainable parameters. |
|
exclude_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether or not to return only the number of non-embedding parameters. |
|
|
|
Returns: |
|
`int`: The number of parameters. |
|
|
|
Example: |
|
|
|
```py |
|
from diffusers import UNet2DConditionModel |
|
|
|
model_id = "runwayml/stable-diffusion-v1-5" |
|
unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet") |
|
unet.num_parameters(only_trainable=True) |
|
859520964 |
|
``` |
|
""" |
|
|
|
if exclude_embeddings: |
|
embedding_param_names = [ |
|
f"{name}.weight" |
|
for name, module_type in self.named_modules() |
|
if isinstance(module_type, torch.nn.Embedding) |
|
] |
|
non_embedding_parameters = [ |
|
parameter for name, parameter in self.named_parameters() if name not in embedding_param_names |
|
] |
|
return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable) |
|
else: |
|
return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable) |
|
|
|
def _convert_deprecated_attention_blocks(self, state_dict: OrderedDict) -> None: |
|
deprecated_attention_block_paths = [] |
|
|
|
def recursive_find_attn_block(name, module): |
|
if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block: |
|
deprecated_attention_block_paths.append(name) |
|
|
|
for sub_name, sub_module in module.named_children(): |
|
sub_name = sub_name if name == "" else f"{name}.{sub_name}" |
|
recursive_find_attn_block(sub_name, sub_module) |
|
|
|
recursive_find_attn_block("", self) |
|
|
|
|
|
|
|
|
|
|
|
for path in deprecated_attention_block_paths: |
|
|
|
|
|
|
|
if f"{path}.query.weight" in state_dict: |
|
state_dict[f"{path}.to_q.weight"] = state_dict.pop(f"{path}.query.weight") |
|
if f"{path}.query.bias" in state_dict: |
|
state_dict[f"{path}.to_q.bias"] = state_dict.pop(f"{path}.query.bias") |
|
|
|
|
|
if f"{path}.key.weight" in state_dict: |
|
state_dict[f"{path}.to_k.weight"] = state_dict.pop(f"{path}.key.weight") |
|
if f"{path}.key.bias" in state_dict: |
|
state_dict[f"{path}.to_k.bias"] = state_dict.pop(f"{path}.key.bias") |
|
|
|
|
|
if f"{path}.value.weight" in state_dict: |
|
state_dict[f"{path}.to_v.weight"] = state_dict.pop(f"{path}.value.weight") |
|
if f"{path}.value.bias" in state_dict: |
|
state_dict[f"{path}.to_v.bias"] = state_dict.pop(f"{path}.value.bias") |
|
|
|
|
|
if f"{path}.proj_attn.weight" in state_dict: |
|
state_dict[f"{path}.to_out.0.weight"] = state_dict.pop(f"{path}.proj_attn.weight") |
|
if f"{path}.proj_attn.bias" in state_dict: |
|
state_dict[f"{path}.to_out.0.bias"] = state_dict.pop(f"{path}.proj_attn.bias") |
|
|
|
def _temp_convert_self_to_deprecated_attention_blocks(self) -> None: |
|
deprecated_attention_block_modules = [] |
|
|
|
def recursive_find_attn_block(module): |
|
if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block: |
|
deprecated_attention_block_modules.append(module) |
|
|
|
for sub_module in module.children(): |
|
recursive_find_attn_block(sub_module) |
|
|
|
recursive_find_attn_block(self) |
|
|
|
for module in deprecated_attention_block_modules: |
|
module.query = module.to_q |
|
module.key = module.to_k |
|
module.value = module.to_v |
|
module.proj_attn = module.to_out[0] |
|
|
|
|
|
|
|
|
|
|
|
del module.to_q |
|
del module.to_k |
|
del module.to_v |
|
del module.to_out |
|
|
|
def _undo_temp_convert_self_to_deprecated_attention_blocks(self) -> None: |
|
deprecated_attention_block_modules = [] |
|
|
|
def recursive_find_attn_block(module) -> None: |
|
if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block: |
|
deprecated_attention_block_modules.append(module) |
|
|
|
for sub_module in module.children(): |
|
recursive_find_attn_block(sub_module) |
|
|
|
recursive_find_attn_block(self) |
|
|
|
for module in deprecated_attention_block_modules: |
|
module.to_q = module.query |
|
module.to_k = module.key |
|
module.to_v = module.value |
|
module.to_out = nn.ModuleList([module.proj_attn, nn.Dropout(module.dropout)]) |
|
|
|
del module.query |
|
del module.key |
|
del module.value |
|
del module.proj_attn |
|
|
|
|
|
class LegacyModelMixin(ModelMixin): |
|
r""" |
|
A subclass of `ModelMixin` to resolve class mapping from legacy classes (like `Transformer2DModel`) to more |
|
pipeline-specific classes (like `DiTTransformer2DModel`). |
|
""" |
|
|
|
@classmethod |
|
@validate_hf_hub_args |
|
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): |
|
|
|
from .model_loading_utils import _fetch_remapped_cls_from_config |
|
|
|
|
|
kwargs_copy = kwargs.copy() |
|
|
|
cache_dir = kwargs.pop("cache_dir", None) |
|
force_download = kwargs.pop("force_download", False) |
|
resume_download = kwargs.pop("resume_download", None) |
|
proxies = kwargs.pop("proxies", None) |
|
local_files_only = kwargs.pop("local_files_only", None) |
|
token = kwargs.pop("token", None) |
|
revision = kwargs.pop("revision", None) |
|
subfolder = kwargs.pop("subfolder", None) |
|
|
|
|
|
config_path = pretrained_model_name_or_path |
|
|
|
user_agent = { |
|
"diffusers": __version__, |
|
"file_type": "model", |
|
"framework": "pytorch", |
|
} |
|
|
|
|
|
config, _, _ = cls.load_config( |
|
config_path, |
|
cache_dir=cache_dir, |
|
return_unused_kwargs=True, |
|
return_commit_hash=True, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
**kwargs, |
|
) |
|
|
|
remapped_class = _fetch_remapped_cls_from_config(config, cls) |
|
|
|
return remapped_class.from_pretrained(pretrained_model_name_or_path, **kwargs_copy) |
|
|