|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional |
|
|
|
from torch import nn |
|
|
|
from ..modeling_outputs import Transformer2DModelOutput |
|
from .transformer_2d import Transformer2DModel |
|
|
|
|
|
class DualTransformer2DModel(nn.Module): |
|
""" |
|
Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference. |
|
|
|
Parameters: |
|
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. |
|
in_channels (`int`, *optional*): |
|
Pass if the input is continuous. The number of channels in the input and output. |
|
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. |
|
dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use. |
|
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images. |
|
Note that this is fixed at training time as it is used for learning a number of position embeddings. See |
|
`ImagePositionalEmbeddings`. |
|
num_vector_embeds (`int`, *optional*): |
|
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels. |
|
Includes the class for the masked latent pixel. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`. |
|
The number of diffusion steps used during training. Note that this is fixed at training time as it is used |
|
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for |
|
up to but not more than steps than `num_embeds_ada_norm`. |
|
attention_bias (`bool`, *optional*): |
|
Configure if the TransformerBlocks' attention should contain a bias parameter. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
attention_head_dim: int = 88, |
|
in_channels: Optional[int] = None, |
|
num_layers: int = 1, |
|
dropout: float = 0.0, |
|
norm_num_groups: int = 32, |
|
cross_attention_dim: Optional[int] = None, |
|
attention_bias: bool = False, |
|
sample_size: Optional[int] = None, |
|
num_vector_embeds: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.transformers = nn.ModuleList( |
|
[ |
|
Transformer2DModel( |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=attention_head_dim, |
|
in_channels=in_channels, |
|
num_layers=num_layers, |
|
dropout=dropout, |
|
norm_num_groups=norm_num_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
attention_bias=attention_bias, |
|
sample_size=sample_size, |
|
num_vector_embeds=num_vector_embeds, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
) |
|
for _ in range(2) |
|
] |
|
) |
|
|
|
|
|
|
|
|
|
self.mix_ratio = 0.5 |
|
|
|
|
|
|
|
self.condition_lengths = [77, 257] |
|
|
|
|
|
|
|
self.transformer_index_for_condition = [1, 0] |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
encoder_hidden_states, |
|
timestep=None, |
|
attention_mask=None, |
|
cross_attention_kwargs=None, |
|
return_dict: bool = True, |
|
): |
|
""" |
|
Args: |
|
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`. |
|
When continuous, `torch.Tensor` of shape `(batch size, channel, height, width)`): Input hidden_states. |
|
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*): |
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to |
|
self-attention. |
|
timestep ( `torch.long`, *optional*): |
|
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step. |
|
attention_mask (`torch.Tensor`, *optional*): |
|
Optional attention mask to be applied in Attention. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
[`~models.transformers.transformer_2d.Transformer2DModelOutput`] or `tuple`: |
|
[`~models.transformers.transformer_2d.Transformer2DModelOutput`] if `return_dict` is True, otherwise a |
|
`tuple`. When returning a tuple, the first element is the sample tensor. |
|
""" |
|
input_states = hidden_states |
|
|
|
encoded_states = [] |
|
tokens_start = 0 |
|
|
|
for i in range(2): |
|
|
|
condition_state = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] |
|
transformer_index = self.transformer_index_for_condition[i] |
|
encoded_state = self.transformers[transformer_index]( |
|
input_states, |
|
encoder_hidden_states=condition_state, |
|
timestep=timestep, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
encoded_states.append(encoded_state - input_states) |
|
tokens_start += self.condition_lengths[i] |
|
|
|
output_states = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) |
|
output_states = output_states + input_states |
|
|
|
if not return_dict: |
|
return (output_states,) |
|
|
|
return Transformer2DModelOutput(sample=output_states) |
|
|