|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from ...configuration_utils import LegacyConfigMixin, register_to_config |
|
from ...utils import deprecate, is_torch_version, logging |
|
from ..attention import BasicTransformerBlock |
|
from ..embeddings import ImagePositionalEmbeddings, PatchEmbed, PixArtAlphaTextProjection |
|
from ..modeling_outputs import Transformer2DModelOutput |
|
from ..modeling_utils import LegacyModelMixin |
|
from ..normalization import AdaLayerNormSingle |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class Transformer2DModelOutput(Transformer2DModelOutput): |
|
deprecation_message = "Importing `Transformer2DModelOutput` from `diffusers.models.transformer_2d` is deprecated and this will be removed in a future version. Please use `from diffusers.models.modeling_outputs import Transformer2DModelOutput`, instead." |
|
deprecate("Transformer2DModelOutput", "1.0.0", deprecation_message) |
|
|
|
|
|
class Transformer2DModel(LegacyModelMixin, LegacyConfigMixin): |
|
""" |
|
A 2D Transformer model for image-like data. |
|
|
|
Parameters: |
|
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. |
|
in_channels (`int`, *optional*): |
|
The number of channels in the input and output (specify if the input is **continuous**). |
|
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. |
|
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). |
|
This is fixed during training since it is used to learn a number of position embeddings. |
|
num_vector_embeds (`int`, *optional*): |
|
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**). |
|
Includes the class for the masked latent pixel. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. |
|
num_embeds_ada_norm ( `int`, *optional*): |
|
The number of diffusion steps used during training. Pass if at least one of the norm_layers is |
|
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are |
|
added to the hidden states. |
|
|
|
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`. |
|
attention_bias (`bool`, *optional*): |
|
Configure if the `TransformerBlocks` attention should contain a bias parameter. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
_no_split_modules = ["BasicTransformerBlock"] |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
attention_head_dim: int = 88, |
|
in_channels: Optional[int] = None, |
|
out_channels: Optional[int] = None, |
|
num_layers: int = 1, |
|
dropout: float = 0.0, |
|
norm_num_groups: int = 32, |
|
cross_attention_dim: Optional[int] = None, |
|
attention_bias: bool = False, |
|
sample_size: Optional[int] = None, |
|
num_vector_embeds: Optional[int] = None, |
|
patch_size: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
use_linear_projection: bool = False, |
|
only_cross_attention: bool = False, |
|
double_self_attention: bool = False, |
|
upcast_attention: bool = False, |
|
norm_type: str = "layer_norm", |
|
norm_elementwise_affine: bool = True, |
|
norm_eps: float = 1e-5, |
|
attention_type: str = "default", |
|
caption_channels: int = None, |
|
interpolation_scale: float = None, |
|
use_additional_conditions: Optional[bool] = None, |
|
): |
|
super().__init__() |
|
|
|
|
|
if patch_size is not None: |
|
if norm_type not in ["ada_norm", "ada_norm_zero", "ada_norm_single"]: |
|
raise NotImplementedError( |
|
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'." |
|
) |
|
elif norm_type in ["ada_norm", "ada_norm_zero"] and num_embeds_ada_norm is None: |
|
raise ValueError( |
|
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None." |
|
) |
|
|
|
|
|
|
|
self.is_input_continuous = (in_channels is not None) and (patch_size is None) |
|
self.is_input_vectorized = num_vector_embeds is not None |
|
self.is_input_patches = in_channels is not None and patch_size is not None |
|
|
|
if self.is_input_continuous and self.is_input_vectorized: |
|
raise ValueError( |
|
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make" |
|
" sure that either `in_channels` or `num_vector_embeds` is None." |
|
) |
|
elif self.is_input_vectorized and self.is_input_patches: |
|
raise ValueError( |
|
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make" |
|
" sure that either `num_vector_embeds` or `num_patches` is None." |
|
) |
|
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches: |
|
raise ValueError( |
|
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:" |
|
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None." |
|
) |
|
|
|
if norm_type == "layer_norm" and num_embeds_ada_norm is not None: |
|
deprecation_message = ( |
|
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or" |
|
" incorrectly set to `'layer_norm'`. Make sure to set `norm_type` to `'ada_norm'` in the config." |
|
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect" |
|
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it" |
|
" would be very nice if you could open a Pull request for the `transformer/config.json` file" |
|
) |
|
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False) |
|
norm_type = "ada_norm" |
|
|
|
|
|
self.use_linear_projection = use_linear_projection |
|
self.interpolation_scale = interpolation_scale |
|
self.caption_channels = caption_channels |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_dim = attention_head_dim |
|
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim |
|
self.in_channels = in_channels |
|
self.out_channels = in_channels if out_channels is None else out_channels |
|
self.gradient_checkpointing = False |
|
|
|
if use_additional_conditions is None: |
|
if norm_type == "ada_norm_single" and sample_size == 128: |
|
use_additional_conditions = True |
|
else: |
|
use_additional_conditions = False |
|
self.use_additional_conditions = use_additional_conditions |
|
|
|
|
|
|
|
|
|
|
|
if self.is_input_continuous: |
|
self._init_continuous_input(norm_type=norm_type) |
|
elif self.is_input_vectorized: |
|
self._init_vectorized_inputs(norm_type=norm_type) |
|
elif self.is_input_patches: |
|
self._init_patched_inputs(norm_type=norm_type) |
|
|
|
def _init_continuous_input(self, norm_type): |
|
self.norm = torch.nn.GroupNorm( |
|
num_groups=self.config.norm_num_groups, num_channels=self.in_channels, eps=1e-6, affine=True |
|
) |
|
if self.use_linear_projection: |
|
self.proj_in = torch.nn.Linear(self.in_channels, self.inner_dim) |
|
else: |
|
self.proj_in = torch.nn.Conv2d(self.in_channels, self.inner_dim, kernel_size=1, stride=1, padding=0) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
self.inner_dim, |
|
self.config.num_attention_heads, |
|
self.config.attention_head_dim, |
|
dropout=self.config.dropout, |
|
cross_attention_dim=self.config.cross_attention_dim, |
|
activation_fn=self.config.activation_fn, |
|
num_embeds_ada_norm=self.config.num_embeds_ada_norm, |
|
attention_bias=self.config.attention_bias, |
|
only_cross_attention=self.config.only_cross_attention, |
|
double_self_attention=self.config.double_self_attention, |
|
upcast_attention=self.config.upcast_attention, |
|
norm_type=norm_type, |
|
norm_elementwise_affine=self.config.norm_elementwise_affine, |
|
norm_eps=self.config.norm_eps, |
|
attention_type=self.config.attention_type, |
|
) |
|
for _ in range(self.config.num_layers) |
|
] |
|
) |
|
|
|
if self.use_linear_projection: |
|
self.proj_out = torch.nn.Linear(self.inner_dim, self.out_channels) |
|
else: |
|
self.proj_out = torch.nn.Conv2d(self.inner_dim, self.out_channels, kernel_size=1, stride=1, padding=0) |
|
|
|
def _init_vectorized_inputs(self, norm_type): |
|
assert self.config.sample_size is not None, "Transformer2DModel over discrete input must provide sample_size" |
|
assert ( |
|
self.config.num_vector_embeds is not None |
|
), "Transformer2DModel over discrete input must provide num_embed" |
|
|
|
self.height = self.config.sample_size |
|
self.width = self.config.sample_size |
|
self.num_latent_pixels = self.height * self.width |
|
|
|
self.latent_image_embedding = ImagePositionalEmbeddings( |
|
num_embed=self.config.num_vector_embeds, embed_dim=self.inner_dim, height=self.height, width=self.width |
|
) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
self.inner_dim, |
|
self.config.num_attention_heads, |
|
self.config.attention_head_dim, |
|
dropout=self.config.dropout, |
|
cross_attention_dim=self.config.cross_attention_dim, |
|
activation_fn=self.config.activation_fn, |
|
num_embeds_ada_norm=self.config.num_embeds_ada_norm, |
|
attention_bias=self.config.attention_bias, |
|
only_cross_attention=self.config.only_cross_attention, |
|
double_self_attention=self.config.double_self_attention, |
|
upcast_attention=self.config.upcast_attention, |
|
norm_type=norm_type, |
|
norm_elementwise_affine=self.config.norm_elementwise_affine, |
|
norm_eps=self.config.norm_eps, |
|
attention_type=self.config.attention_type, |
|
) |
|
for _ in range(self.config.num_layers) |
|
] |
|
) |
|
|
|
self.norm_out = nn.LayerNorm(self.inner_dim) |
|
self.out = nn.Linear(self.inner_dim, self.config.num_vector_embeds - 1) |
|
|
|
def _init_patched_inputs(self, norm_type): |
|
assert self.config.sample_size is not None, "Transformer2DModel over patched input must provide sample_size" |
|
|
|
self.height = self.config.sample_size |
|
self.width = self.config.sample_size |
|
|
|
self.patch_size = self.config.patch_size |
|
interpolation_scale = ( |
|
self.config.interpolation_scale |
|
if self.config.interpolation_scale is not None |
|
else max(self.config.sample_size // 64, 1) |
|
) |
|
self.pos_embed = PatchEmbed( |
|
height=self.config.sample_size, |
|
width=self.config.sample_size, |
|
patch_size=self.config.patch_size, |
|
in_channels=self.in_channels, |
|
embed_dim=self.inner_dim, |
|
interpolation_scale=interpolation_scale, |
|
) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
self.inner_dim, |
|
self.config.num_attention_heads, |
|
self.config.attention_head_dim, |
|
dropout=self.config.dropout, |
|
cross_attention_dim=self.config.cross_attention_dim, |
|
activation_fn=self.config.activation_fn, |
|
num_embeds_ada_norm=self.config.num_embeds_ada_norm, |
|
attention_bias=self.config.attention_bias, |
|
only_cross_attention=self.config.only_cross_attention, |
|
double_self_attention=self.config.double_self_attention, |
|
upcast_attention=self.config.upcast_attention, |
|
norm_type=norm_type, |
|
norm_elementwise_affine=self.config.norm_elementwise_affine, |
|
norm_eps=self.config.norm_eps, |
|
attention_type=self.config.attention_type, |
|
) |
|
for _ in range(self.config.num_layers) |
|
] |
|
) |
|
|
|
if self.config.norm_type != "ada_norm_single": |
|
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6) |
|
self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim) |
|
self.proj_out_2 = nn.Linear( |
|
self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels |
|
) |
|
elif self.config.norm_type == "ada_norm_single": |
|
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6) |
|
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5) |
|
self.proj_out = nn.Linear( |
|
self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels |
|
) |
|
|
|
|
|
self.adaln_single = None |
|
if self.config.norm_type == "ada_norm_single": |
|
|
|
|
|
self.adaln_single = AdaLayerNormSingle( |
|
self.inner_dim, use_additional_conditions=self.use_additional_conditions |
|
) |
|
|
|
self.caption_projection = None |
|
if self.caption_channels is not None: |
|
self.caption_projection = PixArtAlphaTextProjection( |
|
in_features=self.caption_channels, hidden_size=self.inner_dim |
|
) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if hasattr(module, "gradient_checkpointing"): |
|
module.gradient_checkpointing = value |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
timestep: Optional[torch.LongTensor] = None, |
|
added_cond_kwargs: Dict[str, torch.Tensor] = None, |
|
class_labels: Optional[torch.LongTensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
): |
|
""" |
|
The [`Transformer2DModel`] forward method. |
|
|
|
Args: |
|
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.Tensor` of shape `(batch size, channel, height, width)` if continuous): |
|
Input `hidden_states`. |
|
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): |
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to |
|
self-attention. |
|
timestep ( `torch.LongTensor`, *optional*): |
|
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. |
|
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): |
|
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in |
|
`AdaLayerZeroNorm`. |
|
cross_attention_kwargs ( `Dict[str, Any]`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
attention_mask ( `torch.Tensor`, *optional*): |
|
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask |
|
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large |
|
negative values to the attention scores corresponding to "discard" tokens. |
|
encoder_attention_mask ( `torch.Tensor`, *optional*): |
|
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: |
|
|
|
* Mask `(batch, sequence_length)` True = keep, False = discard. |
|
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. |
|
|
|
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format |
|
above. This bias will be added to the cross-attention scores. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
If `return_dict` is True, an [`~models.transformers.transformer_2d.Transformer2DModelOutput`] is returned, |
|
otherwise a `tuple` where the first element is the sample tensor. |
|
""" |
|
if cross_attention_kwargs is not None: |
|
if cross_attention_kwargs.get("scale", None) is not None: |
|
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.ndim == 2: |
|
|
|
|
|
|
|
|
|
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: |
|
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 |
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) |
|
|
|
|
|
if self.is_input_continuous: |
|
batch_size, _, height, width = hidden_states.shape |
|
residual = hidden_states |
|
hidden_states, inner_dim = self._operate_on_continuous_inputs(hidden_states) |
|
elif self.is_input_vectorized: |
|
hidden_states = self.latent_image_embedding(hidden_states) |
|
elif self.is_input_patches: |
|
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size |
|
hidden_states, encoder_hidden_states, timestep, embedded_timestep = self._operate_on_patched_inputs( |
|
hidden_states, encoder_hidden_states, timestep, added_cond_kwargs |
|
) |
|
|
|
|
|
for block in self.transformer_blocks: |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
attention_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
timestep, |
|
cross_attention_kwargs, |
|
class_labels, |
|
**ckpt_kwargs, |
|
) |
|
else: |
|
hidden_states = block( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
timestep=timestep, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
class_labels=class_labels, |
|
) |
|
|
|
|
|
if self.is_input_continuous: |
|
output = self._get_output_for_continuous_inputs( |
|
hidden_states=hidden_states, |
|
residual=residual, |
|
batch_size=batch_size, |
|
height=height, |
|
width=width, |
|
inner_dim=inner_dim, |
|
) |
|
elif self.is_input_vectorized: |
|
output = self._get_output_for_vectorized_inputs(hidden_states) |
|
elif self.is_input_patches: |
|
output = self._get_output_for_patched_inputs( |
|
hidden_states=hidden_states, |
|
timestep=timestep, |
|
class_labels=class_labels, |
|
embedded_timestep=embedded_timestep, |
|
height=height, |
|
width=width, |
|
) |
|
|
|
if not return_dict: |
|
return (output,) |
|
|
|
return Transformer2DModelOutput(sample=output) |
|
|
|
def _operate_on_continuous_inputs(self, hidden_states): |
|
batch, _, height, width = hidden_states.shape |
|
hidden_states = self.norm(hidden_states) |
|
|
|
if not self.use_linear_projection: |
|
hidden_states = self.proj_in(hidden_states) |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) |
|
else: |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) |
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
return hidden_states, inner_dim |
|
|
|
def _operate_on_patched_inputs(self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs): |
|
batch_size = hidden_states.shape[0] |
|
hidden_states = self.pos_embed(hidden_states) |
|
embedded_timestep = None |
|
|
|
if self.adaln_single is not None: |
|
if self.use_additional_conditions and added_cond_kwargs is None: |
|
raise ValueError( |
|
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`." |
|
) |
|
timestep, embedded_timestep = self.adaln_single( |
|
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype |
|
) |
|
|
|
if self.caption_projection is not None: |
|
encoder_hidden_states = self.caption_projection(encoder_hidden_states) |
|
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) |
|
|
|
return hidden_states, encoder_hidden_states, timestep, embedded_timestep |
|
|
|
def _get_output_for_continuous_inputs(self, hidden_states, residual, batch_size, height, width, inner_dim): |
|
if not self.use_linear_projection: |
|
hidden_states = ( |
|
hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() |
|
) |
|
hidden_states = self.proj_out(hidden_states) |
|
else: |
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = ( |
|
hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() |
|
) |
|
|
|
output = hidden_states + residual |
|
return output |
|
|
|
def _get_output_for_vectorized_inputs(self, hidden_states): |
|
hidden_states = self.norm_out(hidden_states) |
|
logits = self.out(hidden_states) |
|
|
|
logits = logits.permute(0, 2, 1) |
|
|
|
output = F.log_softmax(logits.double(), dim=1).float() |
|
return output |
|
|
|
def _get_output_for_patched_inputs( |
|
self, hidden_states, timestep, class_labels, embedded_timestep, height=None, width=None |
|
): |
|
if self.config.norm_type != "ada_norm_single": |
|
conditioning = self.transformer_blocks[0].norm1.emb( |
|
timestep, class_labels, hidden_dtype=hidden_states.dtype |
|
) |
|
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) |
|
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] |
|
hidden_states = self.proj_out_2(hidden_states) |
|
elif self.config.norm_type == "ada_norm_single": |
|
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) |
|
hidden_states = self.norm_out(hidden_states) |
|
|
|
hidden_states = hidden_states * (1 + scale) + shift |
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
|
|
if self.adaln_single is None: |
|
height = width = int(hidden_states.shape[1] ** 0.5) |
|
hidden_states = hidden_states.reshape( |
|
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels) |
|
) |
|
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) |
|
output = hidden_states.reshape( |
|
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size) |
|
) |
|
return output |
|
|