|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..utils import BaseOutput, logging |
|
from ..utils.torch_utils import randn_tensor |
|
from .scheduling_utils import SchedulerMixin |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
|
|
class EDMEulerSchedulerOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's `step` function output. |
|
|
|
Args: |
|
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
The predicted denoised sample `(x_{0})` based on the model output from the current timestep. |
|
`pred_original_sample` can be used to preview progress or for guidance. |
|
""" |
|
|
|
prev_sample: torch.Tensor |
|
pred_original_sample: Optional[torch.Tensor] = None |
|
|
|
|
|
class EDMEulerScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
Implements the Euler scheduler in EDM formulation as presented in Karras et al. 2022 [1]. |
|
|
|
[1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." |
|
https://arxiv.org/abs/2206.00364 |
|
|
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
|
|
Args: |
|
sigma_min (`float`, *optional*, defaults to 0.002): |
|
Minimum noise magnitude in the sigma schedule. This was set to 0.002 in the EDM paper [1]; a reasonable |
|
range is [0, 10]. |
|
sigma_max (`float`, *optional*, defaults to 80.0): |
|
Maximum noise magnitude in the sigma schedule. This was set to 80.0 in the EDM paper [1]; a reasonable |
|
range is [0.2, 80.0]. |
|
sigma_data (`float`, *optional*, defaults to 0.5): |
|
The standard deviation of the data distribution. This is set to 0.5 in the EDM paper [1]. |
|
sigma_schedule (`str`, *optional*, defaults to `karras`): |
|
Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper |
|
(https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was |
|
incorporated in this model: https://huggingface.co/stabilityai/cosxl. |
|
num_train_timesteps (`int`, defaults to 1000): |
|
The number of diffusion steps to train the model. |
|
prediction_type (`str`, defaults to `epsilon`, *optional*): |
|
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), |
|
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen |
|
Video](https://imagen.research.google/video/paper.pdf) paper). |
|
rho (`float`, *optional*, defaults to 7.0): |
|
The rho parameter used for calculating the Karras sigma schedule, which is set to 7.0 in the EDM paper [1]. |
|
""" |
|
|
|
_compatibles = [] |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
sigma_min: float = 0.002, |
|
sigma_max: float = 80.0, |
|
sigma_data: float = 0.5, |
|
sigma_schedule: str = "karras", |
|
num_train_timesteps: int = 1000, |
|
prediction_type: str = "epsilon", |
|
rho: float = 7.0, |
|
): |
|
if sigma_schedule not in ["karras", "exponential"]: |
|
raise ValueError(f"Wrong value for provided for `{sigma_schedule=}`.`") |
|
|
|
|
|
self.num_inference_steps = None |
|
|
|
ramp = torch.linspace(0, 1, num_train_timesteps) |
|
if sigma_schedule == "karras": |
|
sigmas = self._compute_karras_sigmas(ramp) |
|
elif sigma_schedule == "exponential": |
|
sigmas = self._compute_exponential_sigmas(ramp) |
|
|
|
self.timesteps = self.precondition_noise(sigmas) |
|
|
|
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) |
|
|
|
self.is_scale_input_called = False |
|
|
|
self._step_index = None |
|
self._begin_index = None |
|
self.sigmas = self.sigmas.to("cpu") |
|
|
|
@property |
|
def init_noise_sigma(self): |
|
|
|
return (self.config.sigma_max**2 + 1) ** 0.5 |
|
|
|
@property |
|
def step_index(self): |
|
""" |
|
The index counter for current timestep. It will increase 1 after each scheduler step. |
|
""" |
|
return self._step_index |
|
|
|
@property |
|
def begin_index(self): |
|
""" |
|
The index for the first timestep. It should be set from pipeline with `set_begin_index` method. |
|
""" |
|
return self._begin_index |
|
|
|
|
|
def set_begin_index(self, begin_index: int = 0): |
|
""" |
|
Sets the begin index for the scheduler. This function should be run from pipeline before the inference. |
|
|
|
Args: |
|
begin_index (`int`): |
|
The begin index for the scheduler. |
|
""" |
|
self._begin_index = begin_index |
|
|
|
def precondition_inputs(self, sample, sigma): |
|
c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5) |
|
scaled_sample = sample * c_in |
|
return scaled_sample |
|
|
|
def precondition_noise(self, sigma): |
|
if not isinstance(sigma, torch.Tensor): |
|
sigma = torch.tensor([sigma]) |
|
|
|
c_noise = 0.25 * torch.log(sigma) |
|
|
|
return c_noise |
|
|
|
def precondition_outputs(self, sample, model_output, sigma): |
|
sigma_data = self.config.sigma_data |
|
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2) |
|
|
|
if self.config.prediction_type == "epsilon": |
|
c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 |
|
elif self.config.prediction_type == "v_prediction": |
|
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 |
|
else: |
|
raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.") |
|
|
|
denoised = c_skip * sample + c_out * model_output |
|
|
|
return denoised |
|
|
|
def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. |
|
|
|
Args: |
|
sample (`torch.Tensor`): |
|
The input sample. |
|
timestep (`int`, *optional*): |
|
The current timestep in the diffusion chain. |
|
|
|
Returns: |
|
`torch.Tensor`: |
|
A scaled input sample. |
|
""" |
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
sigma = self.sigmas[self.step_index] |
|
sample = self.precondition_inputs(sample, sigma) |
|
|
|
self.is_scale_input_called = True |
|
return sample |
|
|
|
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference). |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
""" |
|
self.num_inference_steps = num_inference_steps |
|
|
|
ramp = torch.linspace(0, 1, self.num_inference_steps) |
|
if self.config.sigma_schedule == "karras": |
|
sigmas = self._compute_karras_sigmas(ramp) |
|
elif self.config.sigma_schedule == "exponential": |
|
sigmas = self._compute_exponential_sigmas(ramp) |
|
|
|
sigmas = sigmas.to(dtype=torch.float32, device=device) |
|
self.timesteps = self.precondition_noise(sigmas) |
|
|
|
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) |
|
self._step_index = None |
|
self._begin_index = None |
|
self.sigmas = self.sigmas.to("cpu") |
|
|
|
|
|
def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor: |
|
"""Constructs the noise schedule of Karras et al. (2022).""" |
|
sigma_min = sigma_min or self.config.sigma_min |
|
sigma_max = sigma_max or self.config.sigma_max |
|
|
|
rho = self.config.rho |
|
min_inv_rho = sigma_min ** (1 / rho) |
|
max_inv_rho = sigma_max ** (1 / rho) |
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho |
|
return sigmas |
|
|
|
def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor: |
|
"""Implementation closely follows k-diffusion. |
|
|
|
https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26 |
|
""" |
|
sigma_min = sigma_min or self.config.sigma_min |
|
sigma_max = sigma_max or self.config.sigma_max |
|
sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0) |
|
return sigmas |
|
|
|
|
|
def index_for_timestep(self, timestep, schedule_timesteps=None): |
|
if schedule_timesteps is None: |
|
schedule_timesteps = self.timesteps |
|
|
|
indices = (schedule_timesteps == timestep).nonzero() |
|
|
|
|
|
|
|
|
|
|
|
pos = 1 if len(indices) > 1 else 0 |
|
|
|
return indices[pos].item() |
|
|
|
|
|
def _init_step_index(self, timestep): |
|
if self.begin_index is None: |
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
self._step_index = self.index_for_timestep(timestep) |
|
else: |
|
self._step_index = self._begin_index |
|
|
|
def step( |
|
self, |
|
model_output: torch.Tensor, |
|
timestep: Union[float, torch.Tensor], |
|
sample: torch.Tensor, |
|
s_churn: float = 0.0, |
|
s_tmin: float = 0.0, |
|
s_tmax: float = float("inf"), |
|
s_noise: float = 1.0, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
) -> Union[EDMEulerSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.Tensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`float`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.Tensor`): |
|
A current instance of a sample created by the diffusion process. |
|
s_churn (`float`): |
|
s_tmin (`float`): |
|
s_tmax (`float`): |
|
s_noise (`float`, defaults to 1.0): |
|
Scaling factor for noise added to the sample. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`): |
|
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or tuple. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] is |
|
returned, otherwise a tuple is returned where the first element is the sample tensor. |
|
""" |
|
|
|
if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)): |
|
raise ValueError( |
|
( |
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" |
|
" `EDMEulerScheduler.step()` is not supported. Make sure to pass" |
|
" one of the `scheduler.timesteps` as a timestep." |
|
), |
|
) |
|
|
|
if not self.is_scale_input_called: |
|
logger.warning( |
|
"The `scale_model_input` function should be called before `step` to ensure correct denoising. " |
|
"See `StableDiffusionPipeline` for a usage example." |
|
) |
|
|
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
|
|
sample = sample.to(torch.float32) |
|
|
|
sigma = self.sigmas[self.step_index] |
|
|
|
gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 |
|
|
|
noise = randn_tensor( |
|
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator |
|
) |
|
|
|
eps = noise * s_noise |
|
sigma_hat = sigma * (gamma + 1) |
|
|
|
if gamma > 0: |
|
sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5 |
|
|
|
|
|
pred_original_sample = self.precondition_outputs(sample, model_output, sigma_hat) |
|
|
|
|
|
derivative = (sample - pred_original_sample) / sigma_hat |
|
|
|
dt = self.sigmas[self.step_index + 1] - sigma_hat |
|
|
|
prev_sample = sample + derivative * dt |
|
|
|
|
|
prev_sample = prev_sample.to(model_output.dtype) |
|
|
|
|
|
self._step_index += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return EDMEulerSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) |
|
|
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.Tensor, |
|
noise: torch.Tensor, |
|
timesteps: torch.Tensor, |
|
) -> torch.Tensor: |
|
|
|
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) |
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): |
|
|
|
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) |
|
timesteps = timesteps.to(original_samples.device, dtype=torch.float32) |
|
else: |
|
schedule_timesteps = self.timesteps.to(original_samples.device) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
|
|
if self.begin_index is None: |
|
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] |
|
elif self.step_index is not None: |
|
|
|
step_indices = [self.step_index] * timesteps.shape[0] |
|
else: |
|
|
|
step_indices = [self.begin_index] * timesteps.shape[0] |
|
|
|
sigma = sigmas[step_indices].flatten() |
|
while len(sigma.shape) < len(original_samples.shape): |
|
sigma = sigma.unsqueeze(-1) |
|
|
|
noisy_samples = original_samples + noise * sigma |
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|