|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Callable, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..utils import deprecate |
|
from ..utils.torch_utils import randn_tensor |
|
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput |
|
|
|
|
|
|
|
def betas_for_alpha_bar( |
|
num_diffusion_timesteps, |
|
max_beta=0.999, |
|
alpha_transform_type="cosine", |
|
): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of |
|
(1-beta) over time from t = [0,1]. |
|
|
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up |
|
to that part of the diffusion process. |
|
|
|
|
|
Args: |
|
num_diffusion_timesteps (`int`): the number of betas to produce. |
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. |
|
Choose from `cosine` or `exp` |
|
|
|
Returns: |
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs |
|
""" |
|
if alpha_transform_type == "cosine": |
|
|
|
def alpha_bar_fn(t): |
|
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 |
|
|
|
elif alpha_transform_type == "exp": |
|
|
|
def alpha_bar_fn(t): |
|
return math.exp(t * -12.0) |
|
|
|
else: |
|
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}") |
|
|
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) |
|
return torch.tensor(betas, dtype=torch.float32) |
|
|
|
|
|
class SASolverScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
`SASolverScheduler` is a fast dedicated high-order solver for diffusion SDEs. |
|
|
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
|
|
Args: |
|
num_train_timesteps (`int`, defaults to 1000): |
|
The number of diffusion steps to train the model. |
|
beta_start (`float`, defaults to 0.0001): |
|
The starting `beta` value of inference. |
|
beta_end (`float`, defaults to 0.02): |
|
The final `beta` value. |
|
beta_schedule (`str`, defaults to `"linear"`): |
|
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear`, `scaled_linear`, or `squaredcos_cap_v2`. |
|
trained_betas (`np.ndarray`, *optional*): |
|
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. |
|
predictor_order (`int`, defaults to 2): |
|
The predictor order which can be `1` or `2` or `3` or '4'. It is recommended to use `predictor_order=2` for |
|
guided sampling, and `predictor_order=3` for unconditional sampling. |
|
corrector_order (`int`, defaults to 2): |
|
The corrector order which can be `1` or `2` or `3` or '4'. It is recommended to use `corrector_order=2` for |
|
guided sampling, and `corrector_order=3` for unconditional sampling. |
|
prediction_type (`str`, defaults to `epsilon`, *optional*): |
|
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), |
|
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen |
|
Video](https://imagen.research.google/video/paper.pdf) paper). |
|
tau_func (`Callable`, *optional*): |
|
Stochasticity during the sampling. Default in init is `lambda t: 1 if t >= 200 and t <= 800 else 0`. |
|
SA-Solver will sample from vanilla diffusion ODE if tau_func is set to `lambda t: 0`. SA-Solver will sample |
|
from vanilla diffusion SDE if tau_func is set to `lambda t: 1`. For more details, please check |
|
https://arxiv.org/abs/2309.05019 |
|
thresholding (`bool`, defaults to `False`): |
|
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such |
|
as Stable Diffusion. |
|
dynamic_thresholding_ratio (`float`, defaults to 0.995): |
|
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`. |
|
sample_max_value (`float`, defaults to 1.0): |
|
The threshold value for dynamic thresholding. Valid only when `thresholding=True` and |
|
`algorithm_type="dpmsolver++"`. |
|
algorithm_type (`str`, defaults to `data_prediction`): |
|
Algorithm type for the solver; can be `data_prediction` or `noise_prediction`. It is recommended to use |
|
`data_prediction` with `solver_order=2` for guided sampling like in Stable Diffusion. |
|
lower_order_final (`bool`, defaults to `True`): |
|
Whether to use lower-order solvers in the final steps. Default = True. |
|
use_karras_sigmas (`bool`, *optional*, defaults to `False`): |
|
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`, |
|
the sigmas are determined according to a sequence of noise levels {σi}. |
|
lambda_min_clipped (`float`, defaults to `-inf`): |
|
Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the |
|
cosine (`squaredcos_cap_v2`) noise schedule. |
|
variance_type (`str`, *optional*): |
|
Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output |
|
contains the predicted Gaussian variance. |
|
timestep_spacing (`str`, defaults to `"linspace"`): |
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. |
|
steps_offset (`int`, defaults to 0): |
|
An offset added to the inference steps, as required by some model families. |
|
""" |
|
|
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers] |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, |
|
predictor_order: int = 2, |
|
corrector_order: int = 2, |
|
prediction_type: str = "epsilon", |
|
tau_func: Optional[Callable] = None, |
|
thresholding: bool = False, |
|
dynamic_thresholding_ratio: float = 0.995, |
|
sample_max_value: float = 1.0, |
|
algorithm_type: str = "data_prediction", |
|
lower_order_final: bool = True, |
|
use_karras_sigmas: Optional[bool] = False, |
|
lambda_min_clipped: float = -float("inf"), |
|
variance_type: Optional[str] = None, |
|
timestep_spacing: str = "linspace", |
|
steps_offset: int = 0, |
|
): |
|
if trained_betas is not None: |
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32) |
|
elif beta_schedule == "linear": |
|
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) |
|
elif beta_schedule == "scaled_linear": |
|
|
|
self.betas = ( |
|
torch.linspace( |
|
beta_start**0.5, |
|
beta_end**0.5, |
|
num_train_timesteps, |
|
dtype=torch.float32, |
|
) |
|
** 2 |
|
) |
|
elif beta_schedule == "squaredcos_cap_v2": |
|
|
|
self.betas = betas_for_alpha_bar(num_train_timesteps) |
|
else: |
|
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}") |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) |
|
|
|
self.alpha_t = torch.sqrt(self.alphas_cumprod) |
|
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) |
|
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) |
|
self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 |
|
|
|
|
|
self.init_noise_sigma = 1.0 |
|
|
|
if algorithm_type not in ["data_prediction", "noise_prediction"]: |
|
raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}") |
|
|
|
|
|
self.num_inference_steps = None |
|
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy() |
|
self.timesteps = torch.from_numpy(timesteps) |
|
self.timestep_list = [None] * max(predictor_order, corrector_order - 1) |
|
self.model_outputs = [None] * max(predictor_order, corrector_order - 1) |
|
|
|
if tau_func is None: |
|
self.tau_func = lambda t: 1 if t >= 200 and t <= 800 else 0 |
|
else: |
|
self.tau_func = tau_func |
|
self.predict_x0 = algorithm_type == "data_prediction" |
|
self.lower_order_nums = 0 |
|
self.last_sample = None |
|
self._step_index = None |
|
self._begin_index = None |
|
self.sigmas = self.sigmas.to("cpu") |
|
|
|
@property |
|
def step_index(self): |
|
""" |
|
The index counter for current timestep. It will increase 1 after each scheduler step. |
|
""" |
|
return self._step_index |
|
|
|
@property |
|
def begin_index(self): |
|
""" |
|
The index for the first timestep. It should be set from pipeline with `set_begin_index` method. |
|
""" |
|
return self._begin_index |
|
|
|
|
|
def set_begin_index(self, begin_index: int = 0): |
|
""" |
|
Sets the begin index for the scheduler. This function should be run from pipeline before the inference. |
|
|
|
Args: |
|
begin_index (`int`): |
|
The begin index for the scheduler. |
|
""" |
|
self._begin_index = begin_index |
|
|
|
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference). |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
""" |
|
|
|
|
|
clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped) |
|
last_timestep = ((self.config.num_train_timesteps - clipped_idx).numpy()).item() |
|
|
|
|
|
if self.config.timestep_spacing == "linspace": |
|
timesteps = ( |
|
np.linspace(0, last_timestep - 1, num_inference_steps + 1).round()[::-1][:-1].copy().astype(np.int64) |
|
) |
|
|
|
elif self.config.timestep_spacing == "leading": |
|
step_ratio = last_timestep // (num_inference_steps + 1) |
|
|
|
|
|
timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64) |
|
timesteps += self.config.steps_offset |
|
elif self.config.timestep_spacing == "trailing": |
|
step_ratio = self.config.num_train_timesteps / num_inference_steps |
|
|
|
|
|
timesteps = np.arange(last_timestep, 0, -step_ratio).round().copy().astype(np.int64) |
|
timesteps -= 1 |
|
else: |
|
raise ValueError( |
|
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." |
|
) |
|
|
|
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) |
|
if self.config.use_karras_sigmas: |
|
log_sigmas = np.log(sigmas) |
|
sigmas = np.flip(sigmas).copy() |
|
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) |
|
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round() |
|
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32) |
|
else: |
|
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) |
|
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5 |
|
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32) |
|
|
|
self.sigmas = torch.from_numpy(sigmas) |
|
self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64) |
|
|
|
self.num_inference_steps = len(timesteps) |
|
self.model_outputs = [ |
|
None, |
|
] * max(self.config.predictor_order, self.config.corrector_order - 1) |
|
self.lower_order_nums = 0 |
|
self.last_sample = None |
|
|
|
|
|
self._step_index = None |
|
self._begin_index = None |
|
self.sigmas = self.sigmas.to("cpu") |
|
|
|
|
|
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: |
|
""" |
|
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the |
|
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by |
|
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing |
|
pixels from saturation at each step. We find that dynamic thresholding results in significantly better |
|
photorealism as well as better image-text alignment, especially when using very large guidance weights." |
|
|
|
https://arxiv.org/abs/2205.11487 |
|
""" |
|
dtype = sample.dtype |
|
batch_size, channels, *remaining_dims = sample.shape |
|
|
|
if dtype not in (torch.float32, torch.float64): |
|
sample = sample.float() |
|
|
|
|
|
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) |
|
|
|
abs_sample = sample.abs() |
|
|
|
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) |
|
s = torch.clamp( |
|
s, min=1, max=self.config.sample_max_value |
|
) |
|
s = s.unsqueeze(1) |
|
sample = torch.clamp(sample, -s, s) / s |
|
|
|
sample = sample.reshape(batch_size, channels, *remaining_dims) |
|
sample = sample.to(dtype) |
|
|
|
return sample |
|
|
|
|
|
def _sigma_to_t(self, sigma, log_sigmas): |
|
|
|
log_sigma = np.log(np.maximum(sigma, 1e-10)) |
|
|
|
|
|
dists = log_sigma - log_sigmas[:, np.newaxis] |
|
|
|
|
|
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) |
|
high_idx = low_idx + 1 |
|
|
|
low = log_sigmas[low_idx] |
|
high = log_sigmas[high_idx] |
|
|
|
|
|
w = (low - log_sigma) / (low - high) |
|
w = np.clip(w, 0, 1) |
|
|
|
|
|
t = (1 - w) * low_idx + w * high_idx |
|
t = t.reshape(sigma.shape) |
|
return t |
|
|
|
|
|
def _sigma_to_alpha_sigma_t(self, sigma): |
|
alpha_t = 1 / ((sigma**2 + 1) ** 0.5) |
|
sigma_t = sigma * alpha_t |
|
|
|
return alpha_t, sigma_t |
|
|
|
|
|
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor: |
|
"""Constructs the noise schedule of Karras et al. (2022).""" |
|
|
|
|
|
|
|
if hasattr(self.config, "sigma_min"): |
|
sigma_min = self.config.sigma_min |
|
else: |
|
sigma_min = None |
|
|
|
if hasattr(self.config, "sigma_max"): |
|
sigma_max = self.config.sigma_max |
|
else: |
|
sigma_max = None |
|
|
|
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() |
|
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() |
|
|
|
rho = 7.0 |
|
ramp = np.linspace(0, 1, num_inference_steps) |
|
min_inv_rho = sigma_min ** (1 / rho) |
|
max_inv_rho = sigma_max ** (1 / rho) |
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho |
|
return sigmas |
|
|
|
def convert_model_output( |
|
self, |
|
model_output: torch.Tensor, |
|
*args, |
|
sample: torch.Tensor = None, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
""" |
|
Convert the model output to the corresponding type the data_prediction/noise_prediction algorithm needs. |
|
Noise_prediction is designed to discretize an integral of the noise prediction model, and data_prediction is |
|
designed to discretize an integral of the data prediction model. |
|
|
|
<Tip> |
|
|
|
The algorithm and model type are decoupled. You can use either data_prediction or noise_prediction for both |
|
noise prediction and data prediction models. |
|
|
|
</Tip> |
|
|
|
Args: |
|
model_output (`torch.Tensor`): |
|
The direct output from the learned diffusion model. |
|
sample (`torch.Tensor`): |
|
A current instance of a sample created by the diffusion process. |
|
|
|
Returns: |
|
`torch.Tensor`: |
|
The converted model output. |
|
""" |
|
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None) |
|
if sample is None: |
|
if len(args) > 1: |
|
sample = args[1] |
|
else: |
|
raise ValueError("missing `sample` as a required keyward argument") |
|
if timestep is not None: |
|
deprecate( |
|
"timesteps", |
|
"1.0.0", |
|
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
sigma = self.sigmas[self.step_index] |
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) |
|
|
|
if self.config.algorithm_type in ["data_prediction"]: |
|
if self.config.prediction_type == "epsilon": |
|
|
|
if self.config.variance_type in ["learned", "learned_range"]: |
|
model_output = model_output[:, :3] |
|
x0_pred = (sample - sigma_t * model_output) / alpha_t |
|
elif self.config.prediction_type == "sample": |
|
x0_pred = model_output |
|
elif self.config.prediction_type == "v_prediction": |
|
x0_pred = alpha_t * sample - sigma_t * model_output |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" |
|
" `v_prediction` for the SASolverScheduler." |
|
) |
|
|
|
if self.config.thresholding: |
|
x0_pred = self._threshold_sample(x0_pred) |
|
|
|
return x0_pred |
|
|
|
|
|
elif self.config.algorithm_type in ["noise_prediction"]: |
|
if self.config.prediction_type == "epsilon": |
|
|
|
if self.config.variance_type in ["learned", "learned_range"]: |
|
epsilon = model_output[:, :3] |
|
else: |
|
epsilon = model_output |
|
elif self.config.prediction_type == "sample": |
|
epsilon = (sample - alpha_t * model_output) / sigma_t |
|
elif self.config.prediction_type == "v_prediction": |
|
epsilon = alpha_t * model_output + sigma_t * sample |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" |
|
" `v_prediction` for the SASolverScheduler." |
|
) |
|
|
|
if self.config.thresholding: |
|
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] |
|
x0_pred = (sample - sigma_t * epsilon) / alpha_t |
|
x0_pred = self._threshold_sample(x0_pred) |
|
epsilon = (sample - alpha_t * x0_pred) / sigma_t |
|
|
|
return epsilon |
|
|
|
def get_coefficients_exponential_negative(self, order, interval_start, interval_end): |
|
""" |
|
Calculate the integral of exp(-x) * x^order dx from interval_start to interval_end |
|
""" |
|
assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3" |
|
|
|
if order == 0: |
|
return torch.exp(-interval_end) * (torch.exp(interval_end - interval_start) - 1) |
|
elif order == 1: |
|
return torch.exp(-interval_end) * ( |
|
(interval_start + 1) * torch.exp(interval_end - interval_start) - (interval_end + 1) |
|
) |
|
elif order == 2: |
|
return torch.exp(-interval_end) * ( |
|
(interval_start**2 + 2 * interval_start + 2) * torch.exp(interval_end - interval_start) |
|
- (interval_end**2 + 2 * interval_end + 2) |
|
) |
|
elif order == 3: |
|
return torch.exp(-interval_end) * ( |
|
(interval_start**3 + 3 * interval_start**2 + 6 * interval_start + 6) |
|
* torch.exp(interval_end - interval_start) |
|
- (interval_end**3 + 3 * interval_end**2 + 6 * interval_end + 6) |
|
) |
|
|
|
def get_coefficients_exponential_positive(self, order, interval_start, interval_end, tau): |
|
""" |
|
Calculate the integral of exp(x(1+tau^2)) * x^order dx from interval_start to interval_end |
|
""" |
|
assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3" |
|
|
|
|
|
interval_end_cov = (1 + tau**2) * interval_end |
|
interval_start_cov = (1 + tau**2) * interval_start |
|
|
|
if order == 0: |
|
return ( |
|
torch.exp(interval_end_cov) * (1 - torch.exp(-(interval_end_cov - interval_start_cov))) / (1 + tau**2) |
|
) |
|
elif order == 1: |
|
return ( |
|
torch.exp(interval_end_cov) |
|
* ( |
|
(interval_end_cov - 1) |
|
- (interval_start_cov - 1) * torch.exp(-(interval_end_cov - interval_start_cov)) |
|
) |
|
/ ((1 + tau**2) ** 2) |
|
) |
|
elif order == 2: |
|
return ( |
|
torch.exp(interval_end_cov) |
|
* ( |
|
(interval_end_cov**2 - 2 * interval_end_cov + 2) |
|
- (interval_start_cov**2 - 2 * interval_start_cov + 2) |
|
* torch.exp(-(interval_end_cov - interval_start_cov)) |
|
) |
|
/ ((1 + tau**2) ** 3) |
|
) |
|
elif order == 3: |
|
return ( |
|
torch.exp(interval_end_cov) |
|
* ( |
|
(interval_end_cov**3 - 3 * interval_end_cov**2 + 6 * interval_end_cov - 6) |
|
- (interval_start_cov**3 - 3 * interval_start_cov**2 + 6 * interval_start_cov - 6) |
|
* torch.exp(-(interval_end_cov - interval_start_cov)) |
|
) |
|
/ ((1 + tau**2) ** 4) |
|
) |
|
|
|
def lagrange_polynomial_coefficient(self, order, lambda_list): |
|
""" |
|
Calculate the coefficient of lagrange polynomial |
|
""" |
|
|
|
assert order in [0, 1, 2, 3] |
|
assert order == len(lambda_list) - 1 |
|
if order == 0: |
|
return [[1]] |
|
elif order == 1: |
|
return [ |
|
[ |
|
1 / (lambda_list[0] - lambda_list[1]), |
|
-lambda_list[1] / (lambda_list[0] - lambda_list[1]), |
|
], |
|
[ |
|
1 / (lambda_list[1] - lambda_list[0]), |
|
-lambda_list[0] / (lambda_list[1] - lambda_list[0]), |
|
], |
|
] |
|
elif order == 2: |
|
denominator1 = (lambda_list[0] - lambda_list[1]) * (lambda_list[0] - lambda_list[2]) |
|
denominator2 = (lambda_list[1] - lambda_list[0]) * (lambda_list[1] - lambda_list[2]) |
|
denominator3 = (lambda_list[2] - lambda_list[0]) * (lambda_list[2] - lambda_list[1]) |
|
return [ |
|
[ |
|
1 / denominator1, |
|
(-lambda_list[1] - lambda_list[2]) / denominator1, |
|
lambda_list[1] * lambda_list[2] / denominator1, |
|
], |
|
[ |
|
1 / denominator2, |
|
(-lambda_list[0] - lambda_list[2]) / denominator2, |
|
lambda_list[0] * lambda_list[2] / denominator2, |
|
], |
|
[ |
|
1 / denominator3, |
|
(-lambda_list[0] - lambda_list[1]) / denominator3, |
|
lambda_list[0] * lambda_list[1] / denominator3, |
|
], |
|
] |
|
elif order == 3: |
|
denominator1 = ( |
|
(lambda_list[0] - lambda_list[1]) |
|
* (lambda_list[0] - lambda_list[2]) |
|
* (lambda_list[0] - lambda_list[3]) |
|
) |
|
denominator2 = ( |
|
(lambda_list[1] - lambda_list[0]) |
|
* (lambda_list[1] - lambda_list[2]) |
|
* (lambda_list[1] - lambda_list[3]) |
|
) |
|
denominator3 = ( |
|
(lambda_list[2] - lambda_list[0]) |
|
* (lambda_list[2] - lambda_list[1]) |
|
* (lambda_list[2] - lambda_list[3]) |
|
) |
|
denominator4 = ( |
|
(lambda_list[3] - lambda_list[0]) |
|
* (lambda_list[3] - lambda_list[1]) |
|
* (lambda_list[3] - lambda_list[2]) |
|
) |
|
return [ |
|
[ |
|
1 / denominator1, |
|
(-lambda_list[1] - lambda_list[2] - lambda_list[3]) / denominator1, |
|
( |
|
lambda_list[1] * lambda_list[2] |
|
+ lambda_list[1] * lambda_list[3] |
|
+ lambda_list[2] * lambda_list[3] |
|
) |
|
/ denominator1, |
|
(-lambda_list[1] * lambda_list[2] * lambda_list[3]) / denominator1, |
|
], |
|
[ |
|
1 / denominator2, |
|
(-lambda_list[0] - lambda_list[2] - lambda_list[3]) / denominator2, |
|
( |
|
lambda_list[0] * lambda_list[2] |
|
+ lambda_list[0] * lambda_list[3] |
|
+ lambda_list[2] * lambda_list[3] |
|
) |
|
/ denominator2, |
|
(-lambda_list[0] * lambda_list[2] * lambda_list[3]) / denominator2, |
|
], |
|
[ |
|
1 / denominator3, |
|
(-lambda_list[0] - lambda_list[1] - lambda_list[3]) / denominator3, |
|
( |
|
lambda_list[0] * lambda_list[1] |
|
+ lambda_list[0] * lambda_list[3] |
|
+ lambda_list[1] * lambda_list[3] |
|
) |
|
/ denominator3, |
|
(-lambda_list[0] * lambda_list[1] * lambda_list[3]) / denominator3, |
|
], |
|
[ |
|
1 / denominator4, |
|
(-lambda_list[0] - lambda_list[1] - lambda_list[2]) / denominator4, |
|
( |
|
lambda_list[0] * lambda_list[1] |
|
+ lambda_list[0] * lambda_list[2] |
|
+ lambda_list[1] * lambda_list[2] |
|
) |
|
/ denominator4, |
|
(-lambda_list[0] * lambda_list[1] * lambda_list[2]) / denominator4, |
|
], |
|
] |
|
|
|
def get_coefficients_fn(self, order, interval_start, interval_end, lambda_list, tau): |
|
assert order in [1, 2, 3, 4] |
|
assert order == len(lambda_list), "the length of lambda list must be equal to the order" |
|
coefficients = [] |
|
lagrange_coefficient = self.lagrange_polynomial_coefficient(order - 1, lambda_list) |
|
for i in range(order): |
|
coefficient = 0 |
|
for j in range(order): |
|
if self.predict_x0: |
|
coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_positive( |
|
order - 1 - j, interval_start, interval_end, tau |
|
) |
|
else: |
|
coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_negative( |
|
order - 1 - j, interval_start, interval_end |
|
) |
|
coefficients.append(coefficient) |
|
assert len(coefficients) == order, "the length of coefficients does not match the order" |
|
return coefficients |
|
|
|
def stochastic_adams_bashforth_update( |
|
self, |
|
model_output: torch.Tensor, |
|
*args, |
|
sample: torch.Tensor, |
|
noise: torch.Tensor, |
|
order: int, |
|
tau: torch.Tensor, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
""" |
|
One step for the SA-Predictor. |
|
|
|
Args: |
|
model_output (`torch.Tensor`): |
|
The direct output from the learned diffusion model at the current timestep. |
|
prev_timestep (`int`): |
|
The previous discrete timestep in the diffusion chain. |
|
sample (`torch.Tensor`): |
|
A current instance of a sample created by the diffusion process. |
|
order (`int`): |
|
The order of SA-Predictor at this timestep. |
|
|
|
Returns: |
|
`torch.Tensor`: |
|
The sample tensor at the previous timestep. |
|
""" |
|
prev_timestep = args[0] if len(args) > 0 else kwargs.pop("prev_timestep", None) |
|
if sample is None: |
|
if len(args) > 1: |
|
sample = args[1] |
|
else: |
|
raise ValueError(" missing `sample` as a required keyward argument") |
|
if noise is None: |
|
if len(args) > 2: |
|
noise = args[2] |
|
else: |
|
raise ValueError(" missing `noise` as a required keyward argument") |
|
if order is None: |
|
if len(args) > 3: |
|
order = args[3] |
|
else: |
|
raise ValueError(" missing `order` as a required keyward argument") |
|
if tau is None: |
|
if len(args) > 4: |
|
tau = args[4] |
|
else: |
|
raise ValueError(" missing `tau` as a required keyward argument") |
|
if prev_timestep is not None: |
|
deprecate( |
|
"prev_timestep", |
|
"1.0.0", |
|
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
model_output_list = self.model_outputs |
|
sigma_t, sigma_s0 = ( |
|
self.sigmas[self.step_index + 1], |
|
self.sigmas[self.step_index], |
|
) |
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) |
|
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) |
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) |
|
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) |
|
|
|
gradient_part = torch.zeros_like(sample) |
|
h = lambda_t - lambda_s0 |
|
lambda_list = [] |
|
|
|
for i in range(order): |
|
si = self.step_index - i |
|
alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si]) |
|
lambda_si = torch.log(alpha_si) - torch.log(sigma_si) |
|
lambda_list.append(lambda_si) |
|
|
|
gradient_coefficients = self.get_coefficients_fn(order, lambda_s0, lambda_t, lambda_list, tau) |
|
|
|
x = sample |
|
|
|
if self.predict_x0: |
|
if ( |
|
order == 2 |
|
): |
|
|
|
|
|
|
|
|
|
temp_sigma = self.sigmas[self.step_index - 1] |
|
temp_alpha_s, temp_sigma_s = self._sigma_to_alpha_sigma_t(temp_sigma) |
|
temp_lambda_s = torch.log(temp_alpha_s) - torch.log(temp_sigma_s) |
|
gradient_coefficients[0] += ( |
|
1.0 |
|
* torch.exp((1 + tau**2) * lambda_t) |
|
* (h**2 / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2)) |
|
/ (lambda_s0 - temp_lambda_s) |
|
) |
|
gradient_coefficients[1] -= ( |
|
1.0 |
|
* torch.exp((1 + tau**2) * lambda_t) |
|
* (h**2 / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2)) |
|
/ (lambda_s0 - temp_lambda_s) |
|
) |
|
|
|
for i in range(order): |
|
if self.predict_x0: |
|
gradient_part += ( |
|
(1 + tau**2) |
|
* sigma_t |
|
* torch.exp(-(tau**2) * lambda_t) |
|
* gradient_coefficients[i] |
|
* model_output_list[-(i + 1)] |
|
) |
|
else: |
|
gradient_part += -(1 + tau**2) * alpha_t * gradient_coefficients[i] * model_output_list[-(i + 1)] |
|
|
|
if self.predict_x0: |
|
noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau**2 * h)) * noise |
|
else: |
|
noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise |
|
|
|
if self.predict_x0: |
|
x_t = torch.exp(-(tau**2) * h) * (sigma_t / sigma_s0) * x + gradient_part + noise_part |
|
else: |
|
x_t = (alpha_t / alpha_s0) * x + gradient_part + noise_part |
|
|
|
x_t = x_t.to(x.dtype) |
|
return x_t |
|
|
|
def stochastic_adams_moulton_update( |
|
self, |
|
this_model_output: torch.Tensor, |
|
*args, |
|
last_sample: torch.Tensor, |
|
last_noise: torch.Tensor, |
|
this_sample: torch.Tensor, |
|
order: int, |
|
tau: torch.Tensor, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
""" |
|
One step for the SA-Corrector. |
|
|
|
Args: |
|
this_model_output (`torch.Tensor`): |
|
The model outputs at `x_t`. |
|
this_timestep (`int`): |
|
The current timestep `t`. |
|
last_sample (`torch.Tensor`): |
|
The generated sample before the last predictor `x_{t-1}`. |
|
this_sample (`torch.Tensor`): |
|
The generated sample after the last predictor `x_{t}`. |
|
order (`int`): |
|
The order of SA-Corrector at this step. |
|
|
|
Returns: |
|
`torch.Tensor`: |
|
The corrected sample tensor at the current timestep. |
|
""" |
|
|
|
this_timestep = args[0] if len(args) > 0 else kwargs.pop("this_timestep", None) |
|
if last_sample is None: |
|
if len(args) > 1: |
|
last_sample = args[1] |
|
else: |
|
raise ValueError(" missing`last_sample` as a required keyward argument") |
|
if last_noise is None: |
|
if len(args) > 2: |
|
last_noise = args[2] |
|
else: |
|
raise ValueError(" missing`last_noise` as a required keyward argument") |
|
if this_sample is None: |
|
if len(args) > 3: |
|
this_sample = args[3] |
|
else: |
|
raise ValueError(" missing`this_sample` as a required keyward argument") |
|
if order is None: |
|
if len(args) > 4: |
|
order = args[4] |
|
else: |
|
raise ValueError(" missing`order` as a required keyward argument") |
|
if tau is None: |
|
if len(args) > 5: |
|
tau = args[5] |
|
else: |
|
raise ValueError(" missing`tau` as a required keyward argument") |
|
if this_timestep is not None: |
|
deprecate( |
|
"this_timestep", |
|
"1.0.0", |
|
"Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
model_output_list = self.model_outputs |
|
sigma_t, sigma_s0 = ( |
|
self.sigmas[self.step_index], |
|
self.sigmas[self.step_index - 1], |
|
) |
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) |
|
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) |
|
|
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) |
|
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) |
|
gradient_part = torch.zeros_like(this_sample) |
|
h = lambda_t - lambda_s0 |
|
lambda_list = [] |
|
for i in range(order): |
|
si = self.step_index - i |
|
alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si]) |
|
lambda_si = torch.log(alpha_si) - torch.log(sigma_si) |
|
lambda_list.append(lambda_si) |
|
|
|
model_prev_list = model_output_list + [this_model_output] |
|
|
|
gradient_coefficients = self.get_coefficients_fn(order, lambda_s0, lambda_t, lambda_list, tau) |
|
|
|
x = last_sample |
|
|
|
if self.predict_x0: |
|
if ( |
|
order == 2 |
|
): |
|
|
|
|
|
|
|
|
|
gradient_coefficients[0] += ( |
|
1.0 |
|
* torch.exp((1 + tau**2) * lambda_t) |
|
* (h / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2 * h)) |
|
) |
|
gradient_coefficients[1] -= ( |
|
1.0 |
|
* torch.exp((1 + tau**2) * lambda_t) |
|
* (h / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2 * h)) |
|
) |
|
|
|
for i in range(order): |
|
if self.predict_x0: |
|
gradient_part += ( |
|
(1 + tau**2) |
|
* sigma_t |
|
* torch.exp(-(tau**2) * lambda_t) |
|
* gradient_coefficients[i] |
|
* model_prev_list[-(i + 1)] |
|
) |
|
else: |
|
gradient_part += -(1 + tau**2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)] |
|
|
|
if self.predict_x0: |
|
noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau**2 * h)) * last_noise |
|
else: |
|
noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * last_noise |
|
|
|
if self.predict_x0: |
|
x_t = torch.exp(-(tau**2) * h) * (sigma_t / sigma_s0) * x + gradient_part + noise_part |
|
else: |
|
x_t = (alpha_t / alpha_s0) * x + gradient_part + noise_part |
|
|
|
x_t = x_t.to(x.dtype) |
|
return x_t |
|
|
|
|
|
def index_for_timestep(self, timestep, schedule_timesteps=None): |
|
if schedule_timesteps is None: |
|
schedule_timesteps = self.timesteps |
|
|
|
index_candidates = (schedule_timesteps == timestep).nonzero() |
|
|
|
if len(index_candidates) == 0: |
|
step_index = len(self.timesteps) - 1 |
|
|
|
|
|
|
|
|
|
elif len(index_candidates) > 1: |
|
step_index = index_candidates[1].item() |
|
else: |
|
step_index = index_candidates[0].item() |
|
|
|
return step_index |
|
|
|
|
|
def _init_step_index(self, timestep): |
|
""" |
|
Initialize the step_index counter for the scheduler. |
|
""" |
|
|
|
if self.begin_index is None: |
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
self._step_index = self.index_for_timestep(timestep) |
|
else: |
|
self._step_index = self._begin_index |
|
|
|
def step( |
|
self, |
|
model_output: torch.Tensor, |
|
timestep: int, |
|
sample: torch.Tensor, |
|
generator=None, |
|
return_dict: bool = True, |
|
) -> Union[SchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with |
|
the SA-Solver. |
|
|
|
Args: |
|
model_output (`torch.Tensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`int`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.Tensor`): |
|
A current instance of a sample created by the diffusion process. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`): |
|
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a |
|
tuple is returned where the first element is the sample tensor. |
|
|
|
""" |
|
if self.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
use_corrector = self.step_index > 0 and self.last_sample is not None |
|
|
|
model_output_convert = self.convert_model_output(model_output, sample=sample) |
|
|
|
if use_corrector: |
|
current_tau = self.tau_func(self.timestep_list[-1]) |
|
sample = self.stochastic_adams_moulton_update( |
|
this_model_output=model_output_convert, |
|
last_sample=self.last_sample, |
|
last_noise=self.last_noise, |
|
this_sample=sample, |
|
order=self.this_corrector_order, |
|
tau=current_tau, |
|
) |
|
|
|
for i in range(max(self.config.predictor_order, self.config.corrector_order - 1) - 1): |
|
self.model_outputs[i] = self.model_outputs[i + 1] |
|
self.timestep_list[i] = self.timestep_list[i + 1] |
|
|
|
self.model_outputs[-1] = model_output_convert |
|
self.timestep_list[-1] = timestep |
|
|
|
noise = randn_tensor( |
|
model_output.shape, |
|
generator=generator, |
|
device=model_output.device, |
|
dtype=model_output.dtype, |
|
) |
|
|
|
if self.config.lower_order_final: |
|
this_predictor_order = min(self.config.predictor_order, len(self.timesteps) - self.step_index) |
|
this_corrector_order = min(self.config.corrector_order, len(self.timesteps) - self.step_index + 1) |
|
else: |
|
this_predictor_order = self.config.predictor_order |
|
this_corrector_order = self.config.corrector_order |
|
|
|
self.this_predictor_order = min(this_predictor_order, self.lower_order_nums + 1) |
|
self.this_corrector_order = min(this_corrector_order, self.lower_order_nums + 2) |
|
assert self.this_predictor_order > 0 |
|
assert self.this_corrector_order > 0 |
|
|
|
self.last_sample = sample |
|
self.last_noise = noise |
|
|
|
current_tau = self.tau_func(self.timestep_list[-1]) |
|
prev_sample = self.stochastic_adams_bashforth_update( |
|
model_output=model_output_convert, |
|
sample=sample, |
|
noise=noise, |
|
order=self.this_predictor_order, |
|
tau=current_tau, |
|
) |
|
|
|
if self.lower_order_nums < max(self.config.predictor_order, self.config.corrector_order - 1): |
|
self.lower_order_nums += 1 |
|
|
|
|
|
self._step_index += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return SchedulerOutput(prev_sample=prev_sample) |
|
|
|
def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
|
|
Args: |
|
sample (`torch.Tensor`): |
|
The input sample. |
|
|
|
Returns: |
|
`torch.Tensor`: |
|
A scaled input sample. |
|
""" |
|
return sample |
|
|
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.Tensor, |
|
noise: torch.Tensor, |
|
timesteps: torch.IntTensor, |
|
) -> torch.Tensor: |
|
|
|
|
|
|
|
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) |
|
alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 |
|
sqrt_alpha_prod = sqrt_alpha_prod.flatten() |
|
while len(sqrt_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) |
|
|
|
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() |
|
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) |
|
|
|
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise |
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|