|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import importlib |
|
import os |
|
from dataclasses import dataclass |
|
from enum import Enum |
|
from typing import Optional, Union |
|
|
|
import torch |
|
from huggingface_hub.utils import validate_hf_hub_args |
|
|
|
from ..utils import BaseOutput, PushToHubMixin |
|
|
|
|
|
SCHEDULER_CONFIG_NAME = "scheduler_config.json" |
|
|
|
|
|
|
|
|
|
|
|
|
|
class KarrasDiffusionSchedulers(Enum): |
|
DDIMScheduler = 1 |
|
DDPMScheduler = 2 |
|
PNDMScheduler = 3 |
|
LMSDiscreteScheduler = 4 |
|
EulerDiscreteScheduler = 5 |
|
HeunDiscreteScheduler = 6 |
|
EulerAncestralDiscreteScheduler = 7 |
|
DPMSolverMultistepScheduler = 8 |
|
DPMSolverSinglestepScheduler = 9 |
|
KDPM2DiscreteScheduler = 10 |
|
KDPM2AncestralDiscreteScheduler = 11 |
|
DEISMultistepScheduler = 12 |
|
UniPCMultistepScheduler = 13 |
|
DPMSolverSDEScheduler = 14 |
|
EDMEulerScheduler = 15 |
|
|
|
|
|
AysSchedules = { |
|
"StableDiffusionTimesteps": [999, 850, 736, 645, 545, 455, 343, 233, 124, 24], |
|
"StableDiffusionSigmas": [14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.0], |
|
"StableDiffusionXLTimesteps": [999, 845, 730, 587, 443, 310, 193, 116, 53, 13], |
|
"StableDiffusionXLSigmas": [14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.0], |
|
"StableDiffusionVideoSigmas": [700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.0], |
|
} |
|
|
|
|
|
@dataclass |
|
class SchedulerOutput(BaseOutput): |
|
""" |
|
Base class for the output of a scheduler's `step` function. |
|
|
|
Args: |
|
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
""" |
|
|
|
prev_sample: torch.Tensor |
|
|
|
|
|
class SchedulerMixin(PushToHubMixin): |
|
""" |
|
Base class for all schedulers. |
|
|
|
[`SchedulerMixin`] contains common functions shared by all schedulers such as general loading and saving |
|
functionalities. |
|
|
|
[`ConfigMixin`] takes care of storing the configuration attributes (like `num_train_timesteps`) that are passed to |
|
the scheduler's `__init__` function, and the attributes can be accessed by `scheduler.config.num_train_timesteps`. |
|
|
|
Class attributes: |
|
- **_compatibles** (`List[str]`) -- A list of scheduler classes that are compatible with the parent scheduler |
|
class. Use [`~ConfigMixin.from_config`] to load a different compatible scheduler class (should be overridden |
|
by parent class). |
|
""" |
|
|
|
config_name = SCHEDULER_CONFIG_NAME |
|
_compatibles = [] |
|
has_compatibles = True |
|
|
|
@classmethod |
|
@validate_hf_hub_args |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None, |
|
subfolder: Optional[str] = None, |
|
return_unused_kwargs=False, |
|
**kwargs, |
|
): |
|
r""" |
|
Instantiate a scheduler from a pre-defined JSON configuration file in a local directory or Hub repository. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): |
|
Can be either: |
|
|
|
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on |
|
the Hub. |
|
- A path to a *directory* (for example `./my_model_directory`) containing the scheduler |
|
configuration saved with [`~SchedulerMixin.save_pretrained`]. |
|
subfolder (`str`, *optional*): |
|
The subfolder location of a model file within a larger model repository on the Hub or locally. |
|
return_unused_kwargs (`bool`, *optional*, defaults to `False`): |
|
Whether kwargs that are not consumed by the Python class should be returned or not. |
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache |
|
is not used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download: |
|
Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1 |
|
of Diffusers. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
output_loading_info(`bool`, *optional*, defaults to `False`): |
|
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. |
|
local_files_only(`bool`, *optional*, defaults to `False`): |
|
Whether to only load local model weights and configuration files or not. If set to `True`, the model |
|
won't be downloaded from the Hub. |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from |
|
`diffusers-cli login` (stored in `~/.huggingface`) is used. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier |
|
allowed by Git. |
|
|
|
<Tip> |
|
|
|
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with |
|
`huggingface-cli login`. You can also activate the special |
|
["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a |
|
firewalled environment. |
|
|
|
</Tip> |
|
|
|
""" |
|
config, kwargs, commit_hash = cls.load_config( |
|
pretrained_model_name_or_path=pretrained_model_name_or_path, |
|
subfolder=subfolder, |
|
return_unused_kwargs=True, |
|
return_commit_hash=True, |
|
**kwargs, |
|
) |
|
return cls.from_config(config, return_unused_kwargs=return_unused_kwargs, **kwargs) |
|
|
|
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs): |
|
""" |
|
Save a scheduler configuration object to a directory so that it can be reloaded using the |
|
[`~SchedulerMixin.from_pretrained`] class method. |
|
|
|
Args: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory where the configuration JSON file will be saved (will be created if it does not exist). |
|
push_to_hub (`bool`, *optional*, defaults to `False`): |
|
Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the |
|
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your |
|
namespace). |
|
kwargs (`Dict[str, Any]`, *optional*): |
|
Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. |
|
""" |
|
self.save_config(save_directory=save_directory, push_to_hub=push_to_hub, **kwargs) |
|
|
|
@property |
|
def compatibles(self): |
|
""" |
|
Returns all schedulers that are compatible with this scheduler |
|
|
|
Returns: |
|
`List[SchedulerMixin]`: List of compatible schedulers |
|
""" |
|
return self._get_compatibles() |
|
|
|
@classmethod |
|
def _get_compatibles(cls): |
|
compatible_classes_str = list(set([cls.__name__] + cls._compatibles)) |
|
diffusers_library = importlib.import_module(__name__.split(".")[0]) |
|
compatible_classes = [ |
|
getattr(diffusers_library, c) for c in compatible_classes_str if hasattr(diffusers_library, c) |
|
] |
|
return compatible_classes |
|
|