|
|
|
from ..utils import DummyObject, requires_backends |
|
|
|
|
|
class AltDiffusionImg2ImgPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class AltDiffusionPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class AmusedImg2ImgPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class AmusedInpaintPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class AmusedPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class AnimateDiffPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class AnimateDiffSDXLPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class AnimateDiffVideoToVideoPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class AudioLDM2Pipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class AudioLDM2ProjectionModel(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class AudioLDM2UNet2DConditionModel(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class AudioLDMPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class CLIPImageProjection(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class CycleDiffusionPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class HunyuanDiTPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class I2VGenXLPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class IFImg2ImgPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class IFImg2ImgSuperResolutionPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class IFInpaintingPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class IFInpaintingSuperResolutionPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class IFPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class IFSuperResolutionPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class ImageTextPipelineOutput(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class Kandinsky3Img2ImgPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class Kandinsky3Pipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class KandinskyCombinedPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class KandinskyImg2ImgCombinedPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class KandinskyImg2ImgPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class KandinskyInpaintCombinedPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class KandinskyInpaintPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class KandinskyPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class KandinskyPriorPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class KandinskyV22CombinedPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class KandinskyV22ControlnetImg2ImgPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class KandinskyV22ControlnetPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class KandinskyV22Img2ImgCombinedPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class KandinskyV22Img2ImgPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class KandinskyV22InpaintCombinedPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class KandinskyV22InpaintPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class KandinskyV22Pipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class KandinskyV22PriorEmb2EmbPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class KandinskyV22PriorPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class LatentConsistencyModelImg2ImgPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class LatentConsistencyModelPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class LDMTextToImagePipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class LEditsPPPipelineStableDiffusion(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class LEditsPPPipelineStableDiffusionXL(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class MarigoldDepthPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class MarigoldNormalsPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class MusicLDMPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class PaintByExamplePipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class PIAPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class PixArtAlphaPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class PixArtSigmaPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class SemanticStableDiffusionPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class ShapEImg2ImgPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class ShapEPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableCascadeCombinedPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableCascadeDecoderPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableCascadePriorPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusion3ControlNetPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusion3Img2ImgPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusion3Pipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionAdapterPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionAttendAndExcitePipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionControlNetImg2ImgPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionControlNetInpaintPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionControlNetPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionControlNetXSPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionDepth2ImgPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionDiffEditPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionGLIGENPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionGLIGENTextImagePipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionImageVariationPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionImg2ImgPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionInpaintPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionInpaintPipelineLegacy(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionInstructPix2PixPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionLatentUpscalePipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionLDM3DPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionModelEditingPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionPanoramaPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionParadigmsPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionPipelineSafe(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionPix2PixZeroPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionSAGPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionUpscalePipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionXLAdapterPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionXLControlNetImg2ImgPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionXLControlNetInpaintPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionXLControlNetPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionXLControlNetXSPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionXLImg2ImgPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionXLInpaintPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionXLInstructPix2PixPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionXLPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableUnCLIPImg2ImgPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableUnCLIPPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableVideoDiffusionPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class TextToVideoSDPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class TextToVideoZeroPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class TextToVideoZeroSDXLPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class UnCLIPImageVariationPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class UnCLIPPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class UniDiffuserModel(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class UniDiffuserPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class UniDiffuserTextDecoder(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class VersatileDiffusionDualGuidedPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class VersatileDiffusionImageVariationPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class VersatileDiffusionPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class VersatileDiffusionTextToImagePipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class VideoToVideoSDPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class VQDiffusionPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class WuerstchenCombinedPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class WuerstchenDecoderPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class WuerstchenPriorPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|