|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
FlowMatchEulerDiscreteScheduler, |
|
SD3Transformer2DModel, |
|
StableDiffusion3Pipeline, |
|
) |
|
from diffusers.utils.testing_utils import is_peft_available, require_peft_backend, require_torch_gpu, torch_device |
|
|
|
|
|
if is_peft_available(): |
|
from peft import LoraConfig |
|
from peft.utils import get_peft_model_state_dict |
|
|
|
sys.path.append(".") |
|
|
|
from utils import check_if_lora_correctly_set |
|
|
|
|
|
@require_peft_backend |
|
class SD3LoRATests(unittest.TestCase): |
|
pipeline_class = StableDiffusion3Pipeline |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
transformer = SD3Transformer2DModel( |
|
sample_size=32, |
|
patch_size=1, |
|
in_channels=4, |
|
num_layers=1, |
|
attention_head_dim=8, |
|
num_attention_heads=4, |
|
caption_projection_dim=32, |
|
joint_attention_dim=32, |
|
pooled_projection_dim=64, |
|
out_channels=4, |
|
) |
|
clip_text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
hidden_act="gelu", |
|
projection_dim=32, |
|
) |
|
|
|
torch.manual_seed(0) |
|
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config) |
|
|
|
torch.manual_seed(0) |
|
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config) |
|
|
|
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
sample_size=32, |
|
in_channels=3, |
|
out_channels=3, |
|
block_out_channels=(4,), |
|
layers_per_block=1, |
|
latent_channels=4, |
|
norm_num_groups=1, |
|
use_quant_conv=False, |
|
use_post_quant_conv=False, |
|
shift_factor=0.0609, |
|
scaling_factor=1.5035, |
|
) |
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler() |
|
|
|
return { |
|
"scheduler": scheduler, |
|
"text_encoder": text_encoder, |
|
"text_encoder_2": text_encoder_2, |
|
"text_encoder_3": text_encoder_3, |
|
"tokenizer": tokenizer, |
|
"tokenizer_2": tokenizer_2, |
|
"tokenizer_3": tokenizer_3, |
|
"transformer": transformer, |
|
"vae": vae, |
|
} |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device="cpu").manual_seed(seed) |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 5.0, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def get_lora_config_for_transformer(self): |
|
lora_config = LoraConfig( |
|
r=4, |
|
lora_alpha=4, |
|
target_modules=["to_q", "to_k", "to_v", "to_out.0"], |
|
init_lora_weights=False, |
|
use_dora=False, |
|
) |
|
return lora_config |
|
|
|
def test_simple_inference_with_transformer_lora_save_load(self): |
|
components = self.get_dummy_components() |
|
transformer_config = self.get_lora_config_for_transformer() |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
pipe.transformer.add_adapter(transformer_config) |
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer") |
|
inputs = self.get_dummy_inputs(torch_device) |
|
images_lora = pipe(**inputs).images |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
transformer_state_dict = get_peft_model_state_dict(pipe.transformer) |
|
|
|
self.pipeline_class.save_lora_weights( |
|
save_directory=tmpdirname, |
|
transformer_lora_layers=transformer_state_dict, |
|
) |
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))) |
|
pipe.unload_lora_weights() |
|
|
|
pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
images_lora_from_pretrained = pipe(**inputs).images |
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer") |
|
|
|
self.assertTrue( |
|
np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3), |
|
"Loading from saved checkpoints should give same results.", |
|
) |
|
|
|
def test_simple_inference_with_transformer_lora_and_scale(self): |
|
components = self.get_dummy_components() |
|
transformer_lora_config = self.get_lora_config_for_transformer() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_no_lora = pipe(**inputs).images |
|
|
|
pipe.transformer.add_adapter(transformer_lora_config) |
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer") |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_lora = pipe(**inputs).images |
|
self.assertTrue( |
|
not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" |
|
) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_lora_scale = pipe(**inputs, joint_attention_kwargs={"scale": 0.5}).images |
|
self.assertTrue( |
|
not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3), |
|
"Lora + scale should change the output", |
|
) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_lora_0_scale = pipe(**inputs, joint_attention_kwargs={"scale": 0.0}).images |
|
self.assertTrue( |
|
np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3), |
|
"Lora + 0 scale should lead to same result as no LoRA", |
|
) |
|
|
|
def test_simple_inference_with_transformer_fused(self): |
|
components = self.get_dummy_components() |
|
transformer_lora_config = self.get_lora_config_for_transformer() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_no_lora = pipe(**inputs).images |
|
|
|
pipe.transformer.add_adapter(transformer_lora_config) |
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer") |
|
|
|
pipe.fuse_lora() |
|
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer") |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
ouput_fused = pipe(**inputs).images |
|
self.assertFalse( |
|
np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output" |
|
) |
|
|
|
def test_simple_inference_with_transformer_fused_with_no_fusion(self): |
|
components = self.get_dummy_components() |
|
transformer_lora_config = self.get_lora_config_for_transformer() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_no_lora = pipe(**inputs).images |
|
|
|
pipe.transformer.add_adapter(transformer_lora_config) |
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer") |
|
inputs = self.get_dummy_inputs(torch_device) |
|
ouput_lora = pipe(**inputs).images |
|
|
|
pipe.fuse_lora() |
|
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer") |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
ouput_fused = pipe(**inputs).images |
|
self.assertFalse( |
|
np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output" |
|
) |
|
self.assertTrue( |
|
np.allclose(ouput_fused, ouput_lora, atol=1e-3, rtol=1e-3), |
|
"Fused lora output should be changed when LoRA isn't fused but still effective.", |
|
) |
|
|
|
def test_simple_inference_with_transformer_fuse_unfuse(self): |
|
components = self.get_dummy_components() |
|
transformer_lora_config = self.get_lora_config_for_transformer() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_no_lora = pipe(**inputs).images |
|
|
|
pipe.transformer.add_adapter(transformer_lora_config) |
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer") |
|
|
|
pipe.fuse_lora() |
|
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer") |
|
inputs = self.get_dummy_inputs(torch_device) |
|
ouput_fused = pipe(**inputs).images |
|
self.assertFalse( |
|
np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output" |
|
) |
|
|
|
pipe.unfuse_lora() |
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer") |
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_unfused_lora = pipe(**inputs).images |
|
self.assertTrue( |
|
np.allclose(ouput_fused, output_unfused_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output" |
|
) |
|
|
|
@require_torch_gpu |
|
def test_sd3_lora(self): |
|
""" |
|
Test loading the loras that are saved with the diffusers and peft formats. |
|
Related PR: https://github.com/huggingface/diffusers/pull/8584 |
|
""" |
|
components = self.get_dummy_components() |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
lora_model_id = "hf-internal-testing/tiny-sd3-loras" |
|
|
|
lora_filename = "lora_diffusers_format.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
pipe.unload_lora_weights() |
|
|
|
lora_filename = "lora_peft_format.safetensors" |
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) |
|
|