|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer |
|
|
|
import diffusers |
|
from diffusers import ( |
|
AnimateDiffSDXLPipeline, |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
MotionAdapter, |
|
UNet2DConditionModel, |
|
UNetMotionModel, |
|
) |
|
from diffusers.utils import is_xformers_available, logging |
|
from diffusers.utils.testing_utils import torch_device |
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, TEXT_TO_IMAGE_PARAMS |
|
from ..test_pipelines_common import ( |
|
IPAdapterTesterMixin, |
|
PipelineTesterMixin, |
|
SDFunctionTesterMixin, |
|
SDXLOptionalComponentsTesterMixin, |
|
) |
|
|
|
|
|
def to_np(tensor): |
|
if isinstance(tensor, torch.Tensor): |
|
tensor = tensor.detach().cpu().numpy() |
|
|
|
return tensor |
|
|
|
|
|
class AnimateDiffPipelineSDXLFastTests( |
|
IPAdapterTesterMixin, |
|
SDFunctionTesterMixin, |
|
PipelineTesterMixin, |
|
SDXLOptionalComponentsTesterMixin, |
|
unittest.TestCase, |
|
): |
|
pipeline_class = AnimateDiffSDXLPipeline |
|
params = TEXT_TO_IMAGE_PARAMS |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
required_optional_params = frozenset( |
|
[ |
|
"num_inference_steps", |
|
"generator", |
|
"latents", |
|
"return_dict", |
|
"callback_on_step_end", |
|
"callback_on_step_end_tensor_inputs", |
|
] |
|
) |
|
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"add_text_embeds", "add_time_ids"}) |
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64, 128), |
|
layers_per_block=2, |
|
time_cond_proj_dim=time_cond_proj_dim, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"), |
|
|
|
attention_head_dim=(2, 4, 8), |
|
use_linear_projection=True, |
|
addition_embed_type="text_time", |
|
addition_time_embed_dim=8, |
|
transformer_layers_per_block=(1, 2, 4), |
|
projection_class_embeddings_input_dim=80, |
|
cross_attention_dim=64, |
|
norm_num_groups=1, |
|
) |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="linear", |
|
clip_sample=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
sample_size=128, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
|
|
hidden_act="gelu", |
|
projection_dim=32, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) |
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
motion_adapter = MotionAdapter( |
|
block_out_channels=(32, 64, 128), |
|
motion_layers_per_block=2, |
|
motion_norm_num_groups=2, |
|
motion_num_attention_heads=4, |
|
use_motion_mid_block=False, |
|
) |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"motion_adapter": motion_adapter, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"text_encoder_2": text_encoder_2, |
|
"tokenizer_2": tokenizer_2, |
|
"feature_extractor": None, |
|
"image_encoder": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 7.5, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_motion_unet_loading(self): |
|
components = self.get_dummy_components() |
|
pipe = AnimateDiffSDXLPipeline(**components) |
|
|
|
assert isinstance(pipe.unet, UNetMotionModel) |
|
|
|
@unittest.skip("Attention slicing is not enabled in this pipeline") |
|
def test_attention_slicing_forward_pass(self): |
|
pass |
|
|
|
def test_inference_batch_single_identical( |
|
self, |
|
batch_size=2, |
|
expected_max_diff=1e-4, |
|
additional_params_copy_to_batched_inputs=["num_inference_steps"], |
|
): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
for components in pipe.components.values(): |
|
if hasattr(components, "set_default_attn_processor"): |
|
components.set_default_attn_processor() |
|
|
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
inputs["generator"] = self.get_generator(0) |
|
|
|
logger = logging.get_logger(pipe.__module__) |
|
logger.setLevel(level=diffusers.logging.FATAL) |
|
|
|
|
|
batched_inputs = {} |
|
batched_inputs.update(inputs) |
|
|
|
for name in self.batch_params: |
|
if name not in inputs: |
|
continue |
|
|
|
value = inputs[name] |
|
if name == "prompt": |
|
len_prompt = len(value) |
|
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] |
|
batched_inputs[name][-1] = 100 * "very long" |
|
|
|
else: |
|
batched_inputs[name] = batch_size * [value] |
|
|
|
if "generator" in inputs: |
|
batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)] |
|
|
|
if "batch_size" in inputs: |
|
batched_inputs["batch_size"] = batch_size |
|
|
|
for arg in additional_params_copy_to_batched_inputs: |
|
batched_inputs[arg] = inputs[arg] |
|
|
|
output = pipe(**inputs) |
|
output_batch = pipe(**batched_inputs) |
|
|
|
assert output_batch[0].shape[0] == batch_size |
|
|
|
max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max() |
|
assert max_diff < expected_max_diff |
|
|
|
@unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices") |
|
def test_to_device(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
pipe.to("cpu") |
|
|
|
model_devices = [ |
|
component.device.type for component in pipe.components.values() if hasattr(component, "device") |
|
] |
|
self.assertTrue(all(device == "cpu" for device in model_devices)) |
|
|
|
output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0] |
|
self.assertTrue(np.isnan(output_cpu).sum() == 0) |
|
|
|
pipe.to("cuda") |
|
model_devices = [ |
|
component.device.type for component in pipe.components.values() if hasattr(component, "device") |
|
] |
|
self.assertTrue(all(device == "cuda" for device in model_devices)) |
|
|
|
output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0] |
|
self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0) |
|
|
|
def test_to_dtype(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] |
|
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes)) |
|
|
|
pipe.to(dtype=torch.float16) |
|
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] |
|
self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes)) |
|
|
|
def test_prompt_embeds(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.to(torch_device) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
prompt = inputs.pop("prompt") |
|
|
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = pipe.encode_prompt(prompt) |
|
|
|
pipe( |
|
**inputs, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
) |
|
|
|
def test_save_load_optional_components(self): |
|
self._test_save_load_optional_components() |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
for component in pipe.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_without_offload = pipe(**inputs).frames[0] |
|
output_without_offload = ( |
|
output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload |
|
) |
|
|
|
pipe.enable_xformers_memory_efficient_attention() |
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_with_offload = pipe(**inputs).frames[0] |
|
output_with_offload = ( |
|
output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload |
|
) |
|
|
|
max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max() |
|
self.assertLess(max_diff, 1e-4, "XFormers attention should not affect the inference results") |
|
|