|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import ( |
|
ClapTextConfig, |
|
ClapTextModelWithProjection, |
|
RobertaTokenizer, |
|
SpeechT5HifiGan, |
|
SpeechT5HifiGanConfig, |
|
) |
|
|
|
from diffusers import ( |
|
AudioLDMPipeline, |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.utils import is_xformers_available |
|
from diffusers.utils.testing_utils import enable_full_determinism, nightly, torch_device |
|
|
|
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS |
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class AudioLDMPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = AudioLDMPipeline |
|
params = TEXT_TO_AUDIO_PARAMS |
|
batch_params = TEXT_TO_AUDIO_BATCH_PARAMS |
|
required_optional_params = frozenset( |
|
[ |
|
"num_inference_steps", |
|
"num_waveforms_per_prompt", |
|
"generator", |
|
"latents", |
|
"output_type", |
|
"return_dict", |
|
"callback", |
|
"callback_steps", |
|
] |
|
) |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(8, 16), |
|
layers_per_block=1, |
|
norm_num_groups=8, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=(8, 16), |
|
class_embed_type="simple_projection", |
|
projection_class_embeddings_input_dim=8, |
|
class_embeddings_concat=True, |
|
) |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[8, 16], |
|
in_channels=1, |
|
out_channels=1, |
|
norm_num_groups=8, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = ClapTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=8, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=1, |
|
num_hidden_layers=1, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
projection_dim=8, |
|
) |
|
text_encoder = ClapTextModelWithProjection(text_encoder_config) |
|
tokenizer = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta", model_max_length=77) |
|
|
|
vocoder_config = SpeechT5HifiGanConfig( |
|
model_in_dim=8, |
|
sampling_rate=16000, |
|
upsample_initial_channel=16, |
|
upsample_rates=[2, 2], |
|
upsample_kernel_sizes=[4, 4], |
|
resblock_kernel_sizes=[3, 7], |
|
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]], |
|
normalize_before=False, |
|
) |
|
|
|
vocoder = SpeechT5HifiGan(vocoder_config) |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"vocoder": vocoder, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A hammer hitting a wooden surface", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
} |
|
return inputs |
|
|
|
def test_audioldm_ddim(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
audioldm_pipe = AudioLDMPipeline(**components) |
|
audioldm_pipe = audioldm_pipe.to(torch_device) |
|
audioldm_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = audioldm_pipe(**inputs) |
|
audio = output.audios[0] |
|
|
|
assert audio.ndim == 1 |
|
assert len(audio) == 256 |
|
|
|
audio_slice = audio[:10] |
|
expected_slice = np.array( |
|
[-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] |
|
) |
|
|
|
assert np.abs(audio_slice - expected_slice).max() < 1e-2 |
|
|
|
def test_audioldm_prompt_embeds(self): |
|
components = self.get_dummy_components() |
|
audioldm_pipe = AudioLDMPipeline(**components) |
|
audioldm_pipe = audioldm_pipe.to(torch_device) |
|
audioldm_pipe = audioldm_pipe.to(torch_device) |
|
audioldm_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["prompt"] = 3 * [inputs["prompt"]] |
|
|
|
|
|
output = audioldm_pipe(**inputs) |
|
audio_1 = output.audios[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
prompt = 3 * [inputs.pop("prompt")] |
|
|
|
text_inputs = audioldm_pipe.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=audioldm_pipe.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_inputs = text_inputs["input_ids"].to(torch_device) |
|
|
|
prompt_embeds = audioldm_pipe.text_encoder( |
|
text_inputs, |
|
) |
|
prompt_embeds = prompt_embeds.text_embeds |
|
|
|
prompt_embeds = F.normalize(prompt_embeds, dim=-1) |
|
|
|
inputs["prompt_embeds"] = prompt_embeds |
|
|
|
|
|
output = audioldm_pipe(**inputs) |
|
audio_2 = output.audios[0] |
|
|
|
assert np.abs(audio_1 - audio_2).max() < 1e-2 |
|
|
|
def test_audioldm_negative_prompt_embeds(self): |
|
components = self.get_dummy_components() |
|
audioldm_pipe = AudioLDMPipeline(**components) |
|
audioldm_pipe = audioldm_pipe.to(torch_device) |
|
audioldm_pipe = audioldm_pipe.to(torch_device) |
|
audioldm_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
negative_prompt = 3 * ["this is a negative prompt"] |
|
inputs["negative_prompt"] = negative_prompt |
|
inputs["prompt"] = 3 * [inputs["prompt"]] |
|
|
|
|
|
output = audioldm_pipe(**inputs) |
|
audio_1 = output.audios[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
prompt = 3 * [inputs.pop("prompt")] |
|
|
|
embeds = [] |
|
for p in [prompt, negative_prompt]: |
|
text_inputs = audioldm_pipe.tokenizer( |
|
p, |
|
padding="max_length", |
|
max_length=audioldm_pipe.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_inputs = text_inputs["input_ids"].to(torch_device) |
|
|
|
text_embeds = audioldm_pipe.text_encoder( |
|
text_inputs, |
|
) |
|
text_embeds = text_embeds.text_embeds |
|
|
|
text_embeds = F.normalize(text_embeds, dim=-1) |
|
|
|
embeds.append(text_embeds) |
|
|
|
inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds |
|
|
|
|
|
output = audioldm_pipe(**inputs) |
|
audio_2 = output.audios[0] |
|
|
|
assert np.abs(audio_1 - audio_2).max() < 1e-2 |
|
|
|
def test_audioldm_negative_prompt(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
components["scheduler"] = PNDMScheduler(skip_prk_steps=True) |
|
audioldm_pipe = AudioLDMPipeline(**components) |
|
audioldm_pipe = audioldm_pipe.to(device) |
|
audioldm_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
negative_prompt = "egg cracking" |
|
output = audioldm_pipe(**inputs, negative_prompt=negative_prompt) |
|
audio = output.audios[0] |
|
|
|
assert audio.ndim == 1 |
|
assert len(audio) == 256 |
|
|
|
audio_slice = audio[:10] |
|
expected_slice = np.array( |
|
[-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] |
|
) |
|
|
|
assert np.abs(audio_slice - expected_slice).max() < 1e-2 |
|
|
|
def test_audioldm_num_waveforms_per_prompt(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
components["scheduler"] = PNDMScheduler(skip_prk_steps=True) |
|
audioldm_pipe = AudioLDMPipeline(**components) |
|
audioldm_pipe = audioldm_pipe.to(device) |
|
audioldm_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A hammer hitting a wooden surface" |
|
|
|
|
|
audios = audioldm_pipe(prompt, num_inference_steps=2).audios |
|
|
|
assert audios.shape == (1, 256) |
|
|
|
|
|
batch_size = 2 |
|
audios = audioldm_pipe([prompt] * batch_size, num_inference_steps=2).audios |
|
|
|
assert audios.shape == (batch_size, 256) |
|
|
|
|
|
num_waveforms_per_prompt = 2 |
|
audios = audioldm_pipe(prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt).audios |
|
|
|
assert audios.shape == (num_waveforms_per_prompt, 256) |
|
|
|
|
|
batch_size = 2 |
|
audios = audioldm_pipe( |
|
[prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt |
|
).audios |
|
|
|
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) |
|
|
|
def test_audioldm_audio_length_in_s(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
audioldm_pipe = AudioLDMPipeline(**components) |
|
audioldm_pipe = audioldm_pipe.to(torch_device) |
|
audioldm_pipe.set_progress_bar_config(disable=None) |
|
vocoder_sampling_rate = audioldm_pipe.vocoder.config.sampling_rate |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = audioldm_pipe(audio_length_in_s=0.016, **inputs) |
|
audio = output.audios[0] |
|
|
|
assert audio.ndim == 1 |
|
assert len(audio) / vocoder_sampling_rate == 0.016 |
|
|
|
output = audioldm_pipe(audio_length_in_s=0.032, **inputs) |
|
audio = output.audios[0] |
|
|
|
assert audio.ndim == 1 |
|
assert len(audio) / vocoder_sampling_rate == 0.032 |
|
|
|
def test_audioldm_vocoder_model_in_dim(self): |
|
components = self.get_dummy_components() |
|
audioldm_pipe = AudioLDMPipeline(**components) |
|
audioldm_pipe = audioldm_pipe.to(torch_device) |
|
audioldm_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = ["hey"] |
|
|
|
output = audioldm_pipe(prompt, num_inference_steps=1) |
|
audio_shape = output.audios.shape |
|
assert audio_shape == (1, 256) |
|
|
|
config = audioldm_pipe.vocoder.config |
|
config.model_in_dim *= 2 |
|
audioldm_pipe.vocoder = SpeechT5HifiGan(config).to(torch_device) |
|
output = audioldm_pipe(prompt, num_inference_steps=1) |
|
audio_shape = output.audios.shape |
|
|
|
assert audio_shape == (1, 256) |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False) |
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical() |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False) |
|
|
|
|
|
@nightly |
|
class AudioLDMPipelineSlowTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16)) |
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype) |
|
inputs = { |
|
"prompt": "A hammer hitting a wooden surface", |
|
"latents": latents, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"guidance_scale": 2.5, |
|
} |
|
return inputs |
|
|
|
def test_audioldm(self): |
|
audioldm_pipe = AudioLDMPipeline.from_pretrained("cvssp/audioldm") |
|
audioldm_pipe = audioldm_pipe.to(torch_device) |
|
audioldm_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
inputs["num_inference_steps"] = 25 |
|
audio = audioldm_pipe(**inputs).audios[0] |
|
|
|
assert audio.ndim == 1 |
|
assert len(audio) == 81920 |
|
|
|
audio_slice = audio[77230:77240] |
|
expected_slice = np.array( |
|
[-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] |
|
) |
|
max_diff = np.abs(expected_slice - audio_slice).max() |
|
assert max_diff < 1e-2 |
|
|
|
|
|
@nightly |
|
class AudioLDMPipelineNightlyTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16)) |
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype) |
|
inputs = { |
|
"prompt": "A hammer hitting a wooden surface", |
|
"latents": latents, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"guidance_scale": 2.5, |
|
} |
|
return inputs |
|
|
|
def test_audioldm_lms(self): |
|
audioldm_pipe = AudioLDMPipeline.from_pretrained("cvssp/audioldm") |
|
audioldm_pipe.scheduler = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config) |
|
audioldm_pipe = audioldm_pipe.to(torch_device) |
|
audioldm_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
audio = audioldm_pipe(**inputs).audios[0] |
|
|
|
assert audio.ndim == 1 |
|
assert len(audio) == 81920 |
|
|
|
audio_slice = audio[27780:27790] |
|
expected_slice = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212]) |
|
max_diff = np.abs(expected_slice - audio_slice).max() |
|
assert max_diff < 3e-2 |
|
|