|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import ( |
|
ClapAudioConfig, |
|
ClapConfig, |
|
ClapFeatureExtractor, |
|
ClapModel, |
|
ClapTextConfig, |
|
GPT2Config, |
|
GPT2Model, |
|
RobertaTokenizer, |
|
SpeechT5HifiGan, |
|
SpeechT5HifiGanConfig, |
|
T5Config, |
|
T5EncoderModel, |
|
T5Tokenizer, |
|
) |
|
|
|
from diffusers import ( |
|
AudioLDM2Pipeline, |
|
AudioLDM2ProjectionModel, |
|
AudioLDM2UNet2DConditionModel, |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
) |
|
from diffusers.utils.testing_utils import enable_full_determinism, nightly, torch_device |
|
|
|
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS |
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class AudioLDM2PipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = AudioLDM2Pipeline |
|
params = TEXT_TO_AUDIO_PARAMS |
|
batch_params = TEXT_TO_AUDIO_BATCH_PARAMS |
|
required_optional_params = frozenset( |
|
[ |
|
"num_inference_steps", |
|
"num_waveforms_per_prompt", |
|
"generator", |
|
"latents", |
|
"output_type", |
|
"return_dict", |
|
"callback", |
|
"callback_steps", |
|
] |
|
) |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = AudioLDM2UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=([None, 16, 32], [None, 16, 32]), |
|
) |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=1, |
|
out_channels=1, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_branch_config = ClapTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=16, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=2, |
|
num_hidden_layers=2, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
projection_dim=16, |
|
) |
|
audio_branch_config = ClapAudioConfig( |
|
spec_size=64, |
|
window_size=4, |
|
num_mel_bins=64, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
depths=[2, 2], |
|
num_attention_heads=[2, 2], |
|
num_hidden_layers=2, |
|
hidden_size=192, |
|
projection_dim=16, |
|
patch_size=2, |
|
patch_stride=2, |
|
patch_embed_input_channels=4, |
|
) |
|
text_encoder_config = ClapConfig.from_text_audio_configs( |
|
text_config=text_branch_config, audio_config=audio_branch_config, projection_dim=16 |
|
) |
|
text_encoder = ClapModel(text_encoder_config) |
|
tokenizer = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta", model_max_length=77) |
|
feature_extractor = ClapFeatureExtractor.from_pretrained( |
|
"hf-internal-testing/tiny-random-ClapModel", hop_length=7900 |
|
) |
|
|
|
torch.manual_seed(0) |
|
text_encoder_2_config = T5Config( |
|
vocab_size=32100, |
|
d_model=32, |
|
d_ff=37, |
|
d_kv=8, |
|
num_heads=2, |
|
num_layers=2, |
|
) |
|
text_encoder_2 = T5EncoderModel(text_encoder_2_config) |
|
tokenizer_2 = T5Tokenizer.from_pretrained("hf-internal-testing/tiny-random-T5Model", model_max_length=77) |
|
|
|
torch.manual_seed(0) |
|
language_model_config = GPT2Config( |
|
n_embd=16, |
|
n_head=2, |
|
n_layer=2, |
|
vocab_size=1000, |
|
n_ctx=99, |
|
n_positions=99, |
|
) |
|
language_model = GPT2Model(language_model_config) |
|
language_model.config.max_new_tokens = 8 |
|
|
|
torch.manual_seed(0) |
|
projection_model = AudioLDM2ProjectionModel(text_encoder_dim=16, text_encoder_1_dim=32, langauge_model_dim=16) |
|
|
|
vocoder_config = SpeechT5HifiGanConfig( |
|
model_in_dim=8, |
|
sampling_rate=16000, |
|
upsample_initial_channel=16, |
|
upsample_rates=[2, 2], |
|
upsample_kernel_sizes=[4, 4], |
|
resblock_kernel_sizes=[3, 7], |
|
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]], |
|
normalize_before=False, |
|
) |
|
|
|
vocoder = SpeechT5HifiGan(vocoder_config) |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"text_encoder_2": text_encoder_2, |
|
"tokenizer": tokenizer, |
|
"tokenizer_2": tokenizer_2, |
|
"feature_extractor": feature_extractor, |
|
"language_model": language_model, |
|
"projection_model": projection_model, |
|
"vocoder": vocoder, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A hammer hitting a wooden surface", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
} |
|
return inputs |
|
|
|
def test_audioldm2_ddim(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
audioldm_pipe = AudioLDM2Pipeline(**components) |
|
audioldm_pipe = audioldm_pipe.to(torch_device) |
|
audioldm_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = audioldm_pipe(**inputs) |
|
audio = output.audios[0] |
|
|
|
assert audio.ndim == 1 |
|
assert len(audio) == 256 |
|
|
|
audio_slice = audio[:10] |
|
expected_slice = np.array( |
|
[0.0025, 0.0018, 0.0018, -0.0023, -0.0026, -0.0020, -0.0026, -0.0021, -0.0027, -0.0020] |
|
) |
|
|
|
assert np.abs(audio_slice - expected_slice).max() < 1e-4 |
|
|
|
def test_audioldm2_prompt_embeds(self): |
|
components = self.get_dummy_components() |
|
audioldm_pipe = AudioLDM2Pipeline(**components) |
|
audioldm_pipe = audioldm_pipe.to(torch_device) |
|
audioldm_pipe = audioldm_pipe.to(torch_device) |
|
audioldm_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["prompt"] = 3 * [inputs["prompt"]] |
|
|
|
|
|
output = audioldm_pipe(**inputs) |
|
audio_1 = output.audios[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
prompt = 3 * [inputs.pop("prompt")] |
|
|
|
text_inputs = audioldm_pipe.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=audioldm_pipe.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_inputs = text_inputs["input_ids"].to(torch_device) |
|
|
|
clap_prompt_embeds = audioldm_pipe.text_encoder.get_text_features(text_inputs) |
|
clap_prompt_embeds = clap_prompt_embeds[:, None, :] |
|
|
|
text_inputs = audioldm_pipe.tokenizer_2( |
|
prompt, |
|
padding="max_length", |
|
max_length=True, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_inputs = text_inputs["input_ids"].to(torch_device) |
|
|
|
t5_prompt_embeds = audioldm_pipe.text_encoder_2( |
|
text_inputs, |
|
) |
|
t5_prompt_embeds = t5_prompt_embeds[0] |
|
|
|
projection_embeds = audioldm_pipe.projection_model(clap_prompt_embeds, t5_prompt_embeds)[0] |
|
generated_prompt_embeds = audioldm_pipe.generate_language_model(projection_embeds, max_new_tokens=8) |
|
|
|
inputs["prompt_embeds"] = t5_prompt_embeds |
|
inputs["generated_prompt_embeds"] = generated_prompt_embeds |
|
|
|
|
|
output = audioldm_pipe(**inputs) |
|
audio_2 = output.audios[0] |
|
|
|
assert np.abs(audio_1 - audio_2).max() < 1e-2 |
|
|
|
def test_audioldm2_negative_prompt_embeds(self): |
|
components = self.get_dummy_components() |
|
audioldm_pipe = AudioLDM2Pipeline(**components) |
|
audioldm_pipe = audioldm_pipe.to(torch_device) |
|
audioldm_pipe = audioldm_pipe.to(torch_device) |
|
audioldm_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
negative_prompt = 3 * ["this is a negative prompt"] |
|
inputs["negative_prompt"] = negative_prompt |
|
inputs["prompt"] = 3 * [inputs["prompt"]] |
|
|
|
|
|
output = audioldm_pipe(**inputs) |
|
audio_1 = output.audios[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
prompt = 3 * [inputs.pop("prompt")] |
|
|
|
embeds = [] |
|
generated_embeds = [] |
|
for p in [prompt, negative_prompt]: |
|
text_inputs = audioldm_pipe.tokenizer( |
|
p, |
|
padding="max_length", |
|
max_length=audioldm_pipe.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_inputs = text_inputs["input_ids"].to(torch_device) |
|
|
|
clap_prompt_embeds = audioldm_pipe.text_encoder.get_text_features(text_inputs) |
|
clap_prompt_embeds = clap_prompt_embeds[:, None, :] |
|
|
|
text_inputs = audioldm_pipe.tokenizer_2( |
|
prompt, |
|
padding="max_length", |
|
max_length=True if len(embeds) == 0 else embeds[0].shape[1], |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_inputs = text_inputs["input_ids"].to(torch_device) |
|
|
|
t5_prompt_embeds = audioldm_pipe.text_encoder_2( |
|
text_inputs, |
|
) |
|
t5_prompt_embeds = t5_prompt_embeds[0] |
|
|
|
projection_embeds = audioldm_pipe.projection_model(clap_prompt_embeds, t5_prompt_embeds)[0] |
|
generated_prompt_embeds = audioldm_pipe.generate_language_model(projection_embeds, max_new_tokens=8) |
|
|
|
embeds.append(t5_prompt_embeds) |
|
generated_embeds.append(generated_prompt_embeds) |
|
|
|
inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds |
|
inputs["generated_prompt_embeds"], inputs["negative_generated_prompt_embeds"] = generated_embeds |
|
|
|
|
|
output = audioldm_pipe(**inputs) |
|
audio_2 = output.audios[0] |
|
|
|
assert np.abs(audio_1 - audio_2).max() < 1e-2 |
|
|
|
def test_audioldm2_negative_prompt(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
components["scheduler"] = PNDMScheduler(skip_prk_steps=True) |
|
audioldm_pipe = AudioLDM2Pipeline(**components) |
|
audioldm_pipe = audioldm_pipe.to(device) |
|
audioldm_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
negative_prompt = "egg cracking" |
|
output = audioldm_pipe(**inputs, negative_prompt=negative_prompt) |
|
audio = output.audios[0] |
|
|
|
assert audio.ndim == 1 |
|
assert len(audio) == 256 |
|
|
|
audio_slice = audio[:10] |
|
expected_slice = np.array( |
|
[0.0025, 0.0018, 0.0018, -0.0023, -0.0026, -0.0020, -0.0026, -0.0021, -0.0027, -0.0020] |
|
) |
|
|
|
assert np.abs(audio_slice - expected_slice).max() < 1e-4 |
|
|
|
def test_audioldm2_num_waveforms_per_prompt(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
components["scheduler"] = PNDMScheduler(skip_prk_steps=True) |
|
audioldm_pipe = AudioLDM2Pipeline(**components) |
|
audioldm_pipe = audioldm_pipe.to(device) |
|
audioldm_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A hammer hitting a wooden surface" |
|
|
|
|
|
audios = audioldm_pipe(prompt, num_inference_steps=2).audios |
|
|
|
assert audios.shape == (1, 256) |
|
|
|
|
|
batch_size = 2 |
|
audios = audioldm_pipe([prompt] * batch_size, num_inference_steps=2).audios |
|
|
|
assert audios.shape == (batch_size, 256) |
|
|
|
|
|
num_waveforms_per_prompt = 2 |
|
audios = audioldm_pipe(prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt).audios |
|
|
|
assert audios.shape == (num_waveforms_per_prompt, 256) |
|
|
|
|
|
batch_size = 2 |
|
audios = audioldm_pipe( |
|
[prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt |
|
).audios |
|
|
|
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) |
|
|
|
def test_audioldm2_audio_length_in_s(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
audioldm_pipe = AudioLDM2Pipeline(**components) |
|
audioldm_pipe = audioldm_pipe.to(torch_device) |
|
audioldm_pipe.set_progress_bar_config(disable=None) |
|
vocoder_sampling_rate = audioldm_pipe.vocoder.config.sampling_rate |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = audioldm_pipe(audio_length_in_s=0.016, **inputs) |
|
audio = output.audios[0] |
|
|
|
assert audio.ndim == 1 |
|
assert len(audio) / vocoder_sampling_rate == 0.016 |
|
|
|
output = audioldm_pipe(audio_length_in_s=0.032, **inputs) |
|
audio = output.audios[0] |
|
|
|
assert audio.ndim == 1 |
|
assert len(audio) / vocoder_sampling_rate == 0.032 |
|
|
|
def test_audioldm2_vocoder_model_in_dim(self): |
|
components = self.get_dummy_components() |
|
audioldm_pipe = AudioLDM2Pipeline(**components) |
|
audioldm_pipe = audioldm_pipe.to(torch_device) |
|
audioldm_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = ["hey"] |
|
|
|
output = audioldm_pipe(prompt, num_inference_steps=1) |
|
audio_shape = output.audios.shape |
|
assert audio_shape == (1, 256) |
|
|
|
config = audioldm_pipe.vocoder.config |
|
config.model_in_dim *= 2 |
|
audioldm_pipe.vocoder = SpeechT5HifiGan(config).to(torch_device) |
|
output = audioldm_pipe(prompt, num_inference_steps=1) |
|
audio_shape = output.audios.shape |
|
|
|
assert audio_shape == (1, 256) |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False) |
|
|
|
@unittest.skip("Raises a not implemented error in AudioLDM2") |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
pass |
|
|
|
def test_dict_tuple_outputs_equivalent(self): |
|
|
|
super().test_dict_tuple_outputs_equivalent(expected_max_difference=2e-4) |
|
|
|
def test_inference_batch_single_identical(self): |
|
|
|
self._test_inference_batch_single_identical(expected_max_diff=2e-4) |
|
|
|
def test_save_load_local(self): |
|
|
|
super().test_save_load_local(expected_max_difference=2e-4) |
|
|
|
def test_save_load_optional_components(self): |
|
|
|
super().test_save_load_optional_components(expected_max_difference=2e-4) |
|
|
|
def test_to_dtype(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
|
|
model_dtypes = {key: component.dtype for key, component in components.items() if hasattr(component, "dtype")} |
|
|
|
|
|
model_dtypes.pop("text_encoder") |
|
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes.values())) |
|
|
|
|
|
model_dtypes["clap_text_branch"] = components["text_encoder"].text_model.dtype |
|
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes.values())) |
|
|
|
|
|
pipe.to(dtype=torch.float16) |
|
model_dtypes = {key: component.dtype for key, component in components.items() if hasattr(component, "dtype")} |
|
self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes.values())) |
|
|
|
def test_sequential_cpu_offload_forward_pass(self): |
|
pass |
|
|
|
|
|
@nightly |
|
class AudioLDM2PipelineSlowTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16)) |
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype) |
|
inputs = { |
|
"prompt": "A hammer hitting a wooden surface", |
|
"latents": latents, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"guidance_scale": 2.5, |
|
} |
|
return inputs |
|
|
|
def get_inputs_tts(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16)) |
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype) |
|
inputs = { |
|
"prompt": "A men saying", |
|
"transcription": "hello my name is John", |
|
"latents": latents, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"guidance_scale": 2.5, |
|
} |
|
return inputs |
|
|
|
def test_audioldm2(self): |
|
audioldm_pipe = AudioLDM2Pipeline.from_pretrained("cvssp/audioldm2") |
|
audioldm_pipe = audioldm_pipe.to(torch_device) |
|
audioldm_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
inputs["num_inference_steps"] = 25 |
|
audio = audioldm_pipe(**inputs).audios[0] |
|
|
|
assert audio.ndim == 1 |
|
assert len(audio) == 81952 |
|
|
|
|
|
audio_slice = audio[17275:17285] |
|
expected_slice = np.array([0.0791, 0.0666, 0.1158, 0.1227, 0.1171, -0.2880, -0.1940, -0.0283, -0.0126, 0.1127]) |
|
max_diff = np.abs(expected_slice - audio_slice).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_audioldm2_lms(self): |
|
audioldm_pipe = AudioLDM2Pipeline.from_pretrained("cvssp/audioldm2") |
|
audioldm_pipe.scheduler = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config) |
|
audioldm_pipe = audioldm_pipe.to(torch_device) |
|
audioldm_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
audio = audioldm_pipe(**inputs).audios[0] |
|
|
|
assert audio.ndim == 1 |
|
assert len(audio) == 81952 |
|
|
|
|
|
audio_slice = audio[31390:31400] |
|
expected_slice = np.array( |
|
[-0.1318, -0.0577, 0.0446, -0.0573, 0.0659, 0.1074, -0.2600, 0.0080, -0.2190, -0.4301] |
|
) |
|
max_diff = np.abs(expected_slice - audio_slice).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_audioldm2_large(self): |
|
audioldm_pipe = AudioLDM2Pipeline.from_pretrained("cvssp/audioldm2-large") |
|
audioldm_pipe = audioldm_pipe.to(torch_device) |
|
audioldm_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
audio = audioldm_pipe(**inputs).audios[0] |
|
|
|
assert audio.ndim == 1 |
|
assert len(audio) == 81952 |
|
|
|
|
|
audio_slice = audio[8825:8835] |
|
expected_slice = np.array( |
|
[-0.1829, -0.1461, 0.0759, -0.1493, -0.1396, 0.5783, 0.3001, -0.3038, -0.0639, -0.2244] |
|
) |
|
max_diff = np.abs(expected_slice - audio_slice).max() |
|
assert max_diff < 1e-3 |
|
|
|
def test_audioldm2_tts(self): |
|
audioldm_tts_pipe = AudioLDM2Pipeline.from_pretrained("anhnct/audioldm2_gigaspeech") |
|
audioldm_tts_pipe = audioldm_tts_pipe.to(torch_device) |
|
audioldm_tts_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs_tts(torch_device) |
|
audio = audioldm_tts_pipe(**inputs).audios[0] |
|
|
|
assert audio.ndim == 1 |
|
assert len(audio) == 81952 |
|
|
|
|
|
audio_slice = audio[8825:8835] |
|
expected_slice = np.array( |
|
[-0.1829, -0.1461, 0.0759, -0.1493, -0.1396, 0.5783, 0.3001, -0.3038, -0.0639, -0.2244] |
|
) |
|
max_diff = np.abs(expected_slice - audio_slice).max() |
|
assert max_diff < 1e-3 |
|
|