|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from transformers import CLIPTokenizer |
|
from transformers.models.blip_2.configuration_blip_2 import Blip2Config |
|
from transformers.models.clip.configuration_clip import CLIPTextConfig |
|
|
|
from diffusers import AutoencoderKL, BlipDiffusionPipeline, PNDMScheduler, UNet2DConditionModel |
|
from diffusers.utils.testing_utils import enable_full_determinism |
|
from src.diffusers.pipelines.blip_diffusion.blip_image_processing import BlipImageProcessor |
|
from src.diffusers.pipelines.blip_diffusion.modeling_blip2 import Blip2QFormerModel |
|
from src.diffusers.pipelines.blip_diffusion.modeling_ctx_clip import ContextCLIPTextModel |
|
|
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class BlipDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = BlipDiffusionPipeline |
|
params = [ |
|
"prompt", |
|
"reference_image", |
|
"source_subject_category", |
|
"target_subject_category", |
|
] |
|
batch_params = [ |
|
"prompt", |
|
"reference_image", |
|
"source_subject_category", |
|
"target_subject_category", |
|
] |
|
required_optional_params = [ |
|
"generator", |
|
"height", |
|
"width", |
|
"latents", |
|
"guidance_scale", |
|
"num_inference_steps", |
|
"neg_prompt", |
|
"guidance_scale", |
|
"prompt_strength", |
|
"prompt_reps", |
|
] |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
vocab_size=1000, |
|
hidden_size=8, |
|
intermediate_size=8, |
|
projection_dim=8, |
|
num_hidden_layers=1, |
|
num_attention_heads=1, |
|
max_position_embeddings=77, |
|
) |
|
text_encoder = ContextCLIPTextModel(text_encoder_config) |
|
|
|
vae = AutoencoderKL( |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownEncoderBlock2D",), |
|
up_block_types=("UpDecoderBlock2D",), |
|
block_out_channels=(8,), |
|
norm_num_groups=8, |
|
layers_per_block=1, |
|
act_fn="silu", |
|
latent_channels=4, |
|
sample_size=8, |
|
) |
|
|
|
blip_vision_config = { |
|
"hidden_size": 8, |
|
"intermediate_size": 8, |
|
"num_hidden_layers": 1, |
|
"num_attention_heads": 1, |
|
"image_size": 224, |
|
"patch_size": 14, |
|
"hidden_act": "quick_gelu", |
|
} |
|
|
|
blip_qformer_config = { |
|
"vocab_size": 1000, |
|
"hidden_size": 8, |
|
"num_hidden_layers": 1, |
|
"num_attention_heads": 1, |
|
"intermediate_size": 8, |
|
"max_position_embeddings": 512, |
|
"cross_attention_frequency": 1, |
|
"encoder_hidden_size": 8, |
|
} |
|
qformer_config = Blip2Config( |
|
vision_config=blip_vision_config, |
|
qformer_config=blip_qformer_config, |
|
num_query_tokens=8, |
|
tokenizer="hf-internal-testing/tiny-random-bert", |
|
) |
|
qformer = Blip2QFormerModel(qformer_config) |
|
|
|
unet = UNet2DConditionModel( |
|
block_out_channels=(8, 16), |
|
norm_num_groups=8, |
|
layers_per_block=1, |
|
sample_size=16, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=8, |
|
) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
scheduler = PNDMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
set_alpha_to_one=False, |
|
skip_prk_steps=True, |
|
) |
|
|
|
vae.eval() |
|
qformer.eval() |
|
text_encoder.eval() |
|
|
|
image_processor = BlipImageProcessor() |
|
|
|
components = { |
|
"text_encoder": text_encoder, |
|
"vae": vae, |
|
"qformer": qformer, |
|
"unet": unet, |
|
"tokenizer": tokenizer, |
|
"scheduler": scheduler, |
|
"image_processor": image_processor, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
np.random.seed(seed) |
|
reference_image = np.random.rand(32, 32, 3) * 255 |
|
reference_image = Image.fromarray(reference_image.astype("uint8")).convert("RGBA") |
|
|
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "swimming underwater", |
|
"generator": generator, |
|
"reference_image": reference_image, |
|
"source_subject_category": "dog", |
|
"target_subject_category": "dog", |
|
"height": 32, |
|
"width": 32, |
|
"guidance_scale": 7.5, |
|
"num_inference_steps": 2, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_blipdiffusion(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
|
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
image = pipe(**self.get_dummy_inputs(device))[0] |
|
image_slice = image[0, -3:, -3:, 0] |
|
|
|
assert image.shape == (1, 16, 16, 4) |
|
|
|
expected_slice = np.array( |
|
[0.5329548, 0.8372512, 0.33269387, 0.82096875, 0.43657133, 0.3783, 0.5953028, 0.51934963, 0.42142007] |
|
) |
|
|
|
assert ( |
|
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
), f" expected_slice {image_slice.flatten()}, but got {image_slice.flatten()}" |
|
|