|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import tempfile |
|
import traceback |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
ControlNetModel, |
|
DDIMScheduler, |
|
EulerDiscreteScheduler, |
|
LCMScheduler, |
|
StableDiffusionControlNetPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
get_python_version, |
|
load_image, |
|
load_numpy, |
|
require_python39_or_higher, |
|
require_torch_2, |
|
require_torch_gpu, |
|
run_test_in_subprocess, |
|
slow, |
|
torch_device, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
from ..pipeline_params import ( |
|
IMAGE_TO_IMAGE_IMAGE_PARAMS, |
|
TEXT_TO_IMAGE_BATCH_PARAMS, |
|
TEXT_TO_IMAGE_IMAGE_PARAMS, |
|
TEXT_TO_IMAGE_PARAMS, |
|
) |
|
from ..test_pipelines_common import ( |
|
IPAdapterTesterMixin, |
|
PipelineKarrasSchedulerTesterMixin, |
|
PipelineLatentTesterMixin, |
|
PipelineTesterMixin, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
|
|
def _test_stable_diffusion_compile(in_queue, out_queue, timeout): |
|
error = None |
|
try: |
|
_ = in_queue.get(timeout=timeout) |
|
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.to("cuda") |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
pipe.unet.to(memory_format=torch.channels_last) |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
|
|
pipe.controlnet.to(memory_format=torch.channels_last) |
|
pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "bird" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" |
|
).resize((512, 512)) |
|
|
|
output = pipe(prompt, image, num_inference_steps=10, generator=generator, output_type="np") |
|
image = output.images[0] |
|
|
|
assert image.shape == (512, 512, 3) |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out_full.npy" |
|
) |
|
expected_image = np.resize(expected_image, (512, 512, 3)) |
|
|
|
assert np.abs(expected_image - image).max() < 1.0 |
|
|
|
except Exception: |
|
error = f"{traceback.format_exc()}" |
|
|
|
results = {"error": error} |
|
out_queue.put(results, timeout=timeout) |
|
out_queue.join() |
|
|
|
|
|
class ControlNetPipelineFastTests( |
|
IPAdapterTesterMixin, |
|
PipelineLatentTesterMixin, |
|
PipelineKarrasSchedulerTesterMixin, |
|
PipelineTesterMixin, |
|
unittest.TestCase, |
|
): |
|
pipeline_class = StableDiffusionControlNetPipeline |
|
params = TEXT_TO_IMAGE_PARAMS |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(4, 8), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
norm_num_groups=1, |
|
time_cond_proj_dim=time_cond_proj_dim, |
|
) |
|
torch.manual_seed(0) |
|
controlnet = ControlNetModel( |
|
block_out_channels=(4, 8), |
|
layers_per_block=2, |
|
in_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
cross_attention_dim=32, |
|
conditioning_embedding_out_channels=(16, 32), |
|
norm_num_groups=1, |
|
) |
|
torch.manual_seed(0) |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[4, 8], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
norm_num_groups=2, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"controlnet": controlnet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
"image_encoder": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
controlnet_embedder_scale_factor = 2 |
|
image = randn_tensor( |
|
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), |
|
generator=generator, |
|
device=torch.device(device), |
|
) |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
"image": image, |
|
} |
|
|
|
return inputs |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) |
|
|
|
def test_ip_adapter_single(self): |
|
expected_pipe_slice = None |
|
if torch_device == "cpu": |
|
expected_pipe_slice = np.array([0.5234, 0.3333, 0.1745, 0.7605, 0.6224, 0.4637, 0.6989, 0.7526, 0.4665]) |
|
return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) |
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(expected_max_diff=2e-3) |
|
|
|
def test_controlnet_lcm(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components(time_cond_proj_dim=256) |
|
sd_pipe = StableDiffusionControlNetPipeline(**components) |
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs) |
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array( |
|
[0.52700454, 0.3930534, 0.25509018, 0.7132304, 0.53696585, 0.46568912, 0.7095368, 0.7059624, 0.4744786] |
|
) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_controlnet_lcm_custom_timesteps(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components(time_cond_proj_dim=256) |
|
sd_pipe = StableDiffusionControlNetPipeline(**components) |
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
del inputs["num_inference_steps"] |
|
inputs["timesteps"] = [999, 499] |
|
output = sd_pipe(**inputs) |
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array( |
|
[0.52700454, 0.3930534, 0.25509018, 0.7132304, 0.53696585, 0.46568912, 0.7095368, 0.7059624, 0.4744786] |
|
) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
|
|
class StableDiffusionMultiControlNetPipelineFastTests( |
|
IPAdapterTesterMixin, PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase |
|
): |
|
pipeline_class = StableDiffusionControlNetPipeline |
|
params = TEXT_TO_IMAGE_PARAMS |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
image_params = frozenset([]) |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(4, 8), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
norm_num_groups=1, |
|
) |
|
torch.manual_seed(0) |
|
|
|
def init_weights(m): |
|
if isinstance(m, torch.nn.Conv2d): |
|
torch.nn.init.normal_(m.weight) |
|
m.bias.data.fill_(1.0) |
|
|
|
controlnet1 = ControlNetModel( |
|
block_out_channels=(4, 8), |
|
layers_per_block=2, |
|
in_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
cross_attention_dim=32, |
|
conditioning_embedding_out_channels=(16, 32), |
|
norm_num_groups=1, |
|
) |
|
controlnet1.controlnet_down_blocks.apply(init_weights) |
|
|
|
torch.manual_seed(0) |
|
controlnet2 = ControlNetModel( |
|
block_out_channels=(4, 8), |
|
layers_per_block=2, |
|
in_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
cross_attention_dim=32, |
|
conditioning_embedding_out_channels=(16, 32), |
|
norm_num_groups=1, |
|
) |
|
controlnet2.controlnet_down_blocks.apply(init_weights) |
|
|
|
torch.manual_seed(0) |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[4, 8], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
norm_num_groups=2, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
controlnet = MultiControlNetModel([controlnet1, controlnet2]) |
|
|
|
components = { |
|
"unet": unet, |
|
"controlnet": controlnet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
"image_encoder": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
controlnet_embedder_scale_factor = 2 |
|
|
|
images = [ |
|
randn_tensor( |
|
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), |
|
generator=generator, |
|
device=torch.device(device), |
|
), |
|
randn_tensor( |
|
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), |
|
generator=generator, |
|
device=torch.device(device), |
|
), |
|
] |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
"image": images, |
|
} |
|
|
|
return inputs |
|
|
|
def test_control_guidance_switch(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
|
|
scale = 10.0 |
|
steps = 4 |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = steps |
|
inputs["controlnet_conditioning_scale"] = scale |
|
output_1 = pipe(**inputs)[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = steps |
|
inputs["controlnet_conditioning_scale"] = scale |
|
output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = steps |
|
inputs["controlnet_conditioning_scale"] = scale |
|
output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = steps |
|
inputs["controlnet_conditioning_scale"] = scale |
|
output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0] |
|
|
|
|
|
assert np.sum(np.abs(output_1 - output_2)) > 1e-3 |
|
assert np.sum(np.abs(output_1 - output_3)) > 1e-3 |
|
assert np.sum(np.abs(output_1 - output_4)) > 1e-3 |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) |
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(expected_max_diff=2e-3) |
|
|
|
def test_ip_adapter_single(self): |
|
expected_pipe_slice = None |
|
if torch_device == "cpu": |
|
expected_pipe_slice = np.array([0.2422, 0.3425, 0.4048, 0.5351, 0.3503, 0.2419, 0.4645, 0.4570, 0.3804]) |
|
return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice) |
|
|
|
def test_save_pretrained_raise_not_implemented_exception(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
try: |
|
|
|
pipe.save_pretrained(tmpdir) |
|
except NotImplementedError: |
|
pass |
|
|
|
def test_inference_multiple_prompt_input(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionControlNetPipeline(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["prompt"] = [inputs["prompt"], inputs["prompt"]] |
|
inputs["image"] = [inputs["image"], inputs["image"]] |
|
output = sd_pipe(**inputs) |
|
image = output.images |
|
|
|
assert image.shape == (2, 64, 64, 3) |
|
|
|
image_1, image_2 = image |
|
|
|
assert np.sum(np.abs(image_1 - image_2)) > 1e-3 |
|
|
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["prompt"] = [inputs["prompt"], inputs["prompt"]] |
|
output_1 = sd_pipe(**inputs) |
|
|
|
assert np.abs(image - output_1.images).max() < 1e-3 |
|
|
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["prompt"] = [inputs["prompt"], inputs["prompt"], inputs["prompt"], inputs["prompt"]] |
|
inputs["image"] = [inputs["image"], inputs["image"], inputs["image"], inputs["image"]] |
|
output_2 = sd_pipe(**inputs) |
|
image = output_2.images |
|
|
|
assert image.shape == (4, 64, 64, 3) |
|
|
|
|
|
class StableDiffusionMultiControlNetOneModelPipelineFastTests( |
|
IPAdapterTesterMixin, PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase |
|
): |
|
pipeline_class = StableDiffusionControlNetPipeline |
|
params = TEXT_TO_IMAGE_PARAMS |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
image_params = frozenset([]) |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(4, 8), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
norm_num_groups=1, |
|
) |
|
torch.manual_seed(0) |
|
|
|
def init_weights(m): |
|
if isinstance(m, torch.nn.Conv2d): |
|
torch.nn.init.normal_(m.weight) |
|
m.bias.data.fill_(1.0) |
|
|
|
controlnet = ControlNetModel( |
|
block_out_channels=(4, 8), |
|
layers_per_block=2, |
|
in_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
cross_attention_dim=32, |
|
conditioning_embedding_out_channels=(16, 32), |
|
norm_num_groups=1, |
|
) |
|
controlnet.controlnet_down_blocks.apply(init_weights) |
|
|
|
torch.manual_seed(0) |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[4, 8], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
norm_num_groups=2, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
controlnet = MultiControlNetModel([controlnet]) |
|
|
|
components = { |
|
"unet": unet, |
|
"controlnet": controlnet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
"image_encoder": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
controlnet_embedder_scale_factor = 2 |
|
|
|
images = [ |
|
randn_tensor( |
|
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), |
|
generator=generator, |
|
device=torch.device(device), |
|
), |
|
] |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
"image": images, |
|
} |
|
|
|
return inputs |
|
|
|
def test_control_guidance_switch(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
|
|
scale = 10.0 |
|
steps = 4 |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = steps |
|
inputs["controlnet_conditioning_scale"] = scale |
|
output_1 = pipe(**inputs)[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = steps |
|
inputs["controlnet_conditioning_scale"] = scale |
|
output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = steps |
|
inputs["controlnet_conditioning_scale"] = scale |
|
output_3 = pipe( |
|
**inputs, |
|
control_guidance_start=[0.1], |
|
control_guidance_end=[0.2], |
|
)[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = steps |
|
inputs["controlnet_conditioning_scale"] = scale |
|
output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5])[0] |
|
|
|
|
|
assert np.sum(np.abs(output_1 - output_2)) > 1e-3 |
|
assert np.sum(np.abs(output_1 - output_3)) > 1e-3 |
|
assert np.sum(np.abs(output_1 - output_4)) > 1e-3 |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) |
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(expected_max_diff=2e-3) |
|
|
|
def test_ip_adapter_single(self): |
|
expected_pipe_slice = None |
|
if torch_device == "cpu": |
|
expected_pipe_slice = np.array([0.5264, 0.3203, 0.1602, 0.8235, 0.6332, 0.4593, 0.7226, 0.7777, 0.4780]) |
|
return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice) |
|
|
|
def test_save_pretrained_raise_not_implemented_exception(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
try: |
|
|
|
pipe.save_pretrained(tmpdir) |
|
except NotImplementedError: |
|
pass |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class ControlNetPipelineSlowTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_canny(self): |
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "bird" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" |
|
) |
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (768, 512, 3) |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out.npy" |
|
) |
|
|
|
assert np.abs(expected_image - image).max() < 9e-2 |
|
|
|
def test_depth(self): |
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-depth") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "Stormtrooper's lecture" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png" |
|
) |
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (512, 512, 3) |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth_out.npy" |
|
) |
|
|
|
assert np.abs(expected_image - image).max() < 8e-1 |
|
|
|
def test_hed(self): |
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-hed") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "oil painting of handsome old man, masterpiece" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed.png" |
|
) |
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (704, 512, 3) |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed_out.npy" |
|
) |
|
|
|
assert np.abs(expected_image - image).max() < 8e-2 |
|
|
|
def test_mlsd(self): |
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-mlsd") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "room" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd.png" |
|
) |
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (704, 512, 3) |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd_out.npy" |
|
) |
|
|
|
assert np.abs(expected_image - image).max() < 5e-2 |
|
|
|
def test_normal(self): |
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-normal") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "cute toy" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal.png" |
|
) |
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (512, 512, 3) |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal_out.npy" |
|
) |
|
|
|
assert np.abs(expected_image - image).max() < 5e-2 |
|
|
|
def test_openpose(self): |
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "Chef in the kitchen" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" |
|
) |
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (768, 512, 3) |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/chef_pose_out.npy" |
|
) |
|
|
|
assert np.abs(expected_image - image).max() < 8e-2 |
|
|
|
def test_scribble(self): |
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(5) |
|
prompt = "bag" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble.png" |
|
) |
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (640, 512, 3) |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble_out.npy" |
|
) |
|
|
|
assert np.abs(expected_image - image).max() < 8e-2 |
|
|
|
def test_seg(self): |
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(5) |
|
prompt = "house" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png" |
|
) |
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (512, 512, 3) |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg_out.npy" |
|
) |
|
|
|
assert np.abs(expected_image - image).max() < 8e-2 |
|
|
|
def test_sequential_cpu_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
prompt = "house" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png" |
|
) |
|
|
|
_ = pipe( |
|
prompt, |
|
image, |
|
num_inference_steps=2, |
|
output_type="np", |
|
) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 4 * 10**9 |
|
|
|
def test_canny_guess_mode(self): |
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" |
|
) |
|
|
|
output = pipe( |
|
prompt, |
|
image, |
|
generator=generator, |
|
output_type="np", |
|
num_inference_steps=3, |
|
guidance_scale=3.0, |
|
guess_mode=True, |
|
) |
|
|
|
image = output.images[0] |
|
assert image.shape == (768, 512, 3) |
|
|
|
image_slice = image[-3:, -3:, -1] |
|
expected_slice = np.array([0.2724, 0.2846, 0.2724, 0.3843, 0.3682, 0.2736, 0.4675, 0.3862, 0.2887]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_canny_guess_mode_euler(self): |
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" |
|
) |
|
|
|
output = pipe( |
|
prompt, |
|
image, |
|
generator=generator, |
|
output_type="np", |
|
num_inference_steps=3, |
|
guidance_scale=3.0, |
|
guess_mode=True, |
|
) |
|
|
|
image = output.images[0] |
|
assert image.shape == (768, 512, 3) |
|
|
|
image_slice = image[-3:, -3:, -1] |
|
expected_slice = np.array([0.1655, 0.1721, 0.1623, 0.1685, 0.1711, 0.1646, 0.1651, 0.1631, 0.1494]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
@require_python39_or_higher |
|
@require_torch_2 |
|
@unittest.skipIf( |
|
get_python_version == (3, 12), |
|
reason="Torch Dynamo isn't yet supported for Python 3.12.", |
|
) |
|
def test_stable_diffusion_compile(self): |
|
run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=None) |
|
|
|
def test_v11_shuffle_global_pool_conditions(self): |
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11e_sd15_shuffle") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "New York" |
|
image = load_image( |
|
"https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png" |
|
) |
|
|
|
output = pipe( |
|
prompt, |
|
image, |
|
generator=generator, |
|
output_type="np", |
|
num_inference_steps=3, |
|
guidance_scale=7.0, |
|
) |
|
|
|
image = output.images[0] |
|
assert image.shape == (512, 640, 3) |
|
|
|
image_slice = image[-3:, -3:, -1] |
|
expected_slice = np.array([0.1338, 0.1597, 0.1202, 0.1687, 0.1377, 0.1017, 0.2070, 0.1574, 0.1348]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionMultiControlNetPipelineSlowTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_pose_and_canny(self): |
|
controlnet_canny = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") |
|
controlnet_pose = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=[controlnet_pose, controlnet_canny] |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "bird and Chef" |
|
image_canny = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" |
|
) |
|
image_pose = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" |
|
) |
|
|
|
output = pipe(prompt, [image_pose, image_canny], generator=generator, output_type="np", num_inference_steps=3) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (768, 512, 3) |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose_canny_out.npy" |
|
) |
|
|
|
assert np.abs(expected_image - image).max() < 5e-2 |
|
|