|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
ControlNetModel, |
|
EulerDiscreteScheduler, |
|
StableDiffusionXLControlNetImg2ImgPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device |
|
|
|
from ..pipeline_params import ( |
|
IMAGE_TO_IMAGE_IMAGE_PARAMS, |
|
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, |
|
TEXT_GUIDED_IMAGE_VARIATION_PARAMS, |
|
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, |
|
) |
|
from ..test_pipelines_common import ( |
|
IPAdapterTesterMixin, |
|
PipelineKarrasSchedulerTesterMixin, |
|
PipelineLatentTesterMixin, |
|
PipelineTesterMixin, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class ControlNetPipelineSDXLImg2ImgFastTests( |
|
IPAdapterTesterMixin, |
|
PipelineLatentTesterMixin, |
|
PipelineKarrasSchedulerTesterMixin, |
|
PipelineTesterMixin, |
|
unittest.TestCase, |
|
): |
|
pipeline_class = StableDiffusionXLControlNetImg2ImgPipeline |
|
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS |
|
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} |
|
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS |
|
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS |
|
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union( |
|
{"add_text_embeds", "add_time_ids", "add_neg_time_ids"} |
|
) |
|
|
|
def get_dummy_components(self, skip_first_text_encoder=False): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
|
|
attention_head_dim=(2, 4), |
|
use_linear_projection=True, |
|
addition_embed_type="text_time", |
|
addition_time_embed_dim=8, |
|
transformer_layers_per_block=(1, 2), |
|
projection_class_embeddings_input_dim=80, |
|
cross_attention_dim=64 if not skip_first_text_encoder else 32, |
|
) |
|
torch.manual_seed(0) |
|
controlnet = ControlNetModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
in_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
conditioning_embedding_out_channels=(16, 32), |
|
|
|
attention_head_dim=(2, 4), |
|
use_linear_projection=True, |
|
addition_embed_type="text_time", |
|
addition_time_embed_dim=8, |
|
transformer_layers_per_block=(1, 2), |
|
projection_class_embeddings_input_dim=80, |
|
cross_attention_dim=64, |
|
) |
|
torch.manual_seed(0) |
|
scheduler = EulerDiscreteScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
steps_offset=1, |
|
beta_schedule="scaled_linear", |
|
timestep_spacing="leading", |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
|
|
hidden_act="gelu", |
|
projection_dim=32, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) |
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"controlnet": controlnet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder if not skip_first_text_encoder else None, |
|
"tokenizer": tokenizer if not skip_first_text_encoder else None, |
|
"text_encoder_2": text_encoder_2, |
|
"tokenizer_2": tokenizer_2, |
|
"image_encoder": None, |
|
"feature_extractor": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
controlnet_embedder_scale_factor = 2 |
|
image = floats_tensor( |
|
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), |
|
rng=random.Random(seed), |
|
).to(device) |
|
|
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
"image": image, |
|
"control_image": image, |
|
} |
|
|
|
return inputs |
|
|
|
def test_ip_adapter_single(self): |
|
expected_pipe_slice = None |
|
if torch_device == "cpu": |
|
expected_pipe_slice = np.array([0.6265, 0.5441, 0.5384, 0.5446, 0.5810, 0.5908, 0.5414, 0.5428, 0.5353]) |
|
return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice) |
|
|
|
def test_stable_diffusion_xl_controlnet_img2img(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
assert image.shape == (1, 64, 64, 3) |
|
|
|
expected_slice = np.array( |
|
[0.5557202, 0.46418434, 0.46983826, 0.623529, 0.5557242, 0.49262643, 0.6070508, 0.5702978, 0.43777135] |
|
) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_xl_controlnet_img2img_guess(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
|
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
|
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["guess_mode"] = True |
|
|
|
output = sd_pipe(**inputs) |
|
image_slice = output.images[0, -3:, -3:, -1] |
|
assert output.images.shape == (1, 64, 64, 3) |
|
|
|
expected_slice = np.array( |
|
[0.5557202, 0.46418434, 0.46983826, 0.623529, 0.5557242, 0.49262643, 0.6070508, 0.5702978, 0.43777135] |
|
) |
|
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) |
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(expected_max_diff=2e-3) |
|
|
|
|
|
def test_save_load_optional_components(self): |
|
pass |
|
|
|
@require_torch_gpu |
|
def test_stable_diffusion_xl_offloads(self): |
|
pipes = [] |
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components).to(torch_device) |
|
pipes.append(sd_pipe) |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe.enable_model_cpu_offload() |
|
pipes.append(sd_pipe) |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe.enable_sequential_cpu_offload() |
|
pipes.append(sd_pipe) |
|
|
|
image_slices = [] |
|
for pipe in pipes: |
|
pipe.unet.set_default_attn_processor() |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
|
|
image_slices.append(image[0, -3:, -3:, -1].flatten()) |
|
|
|
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 |
|
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 |
|
|
|
def test_stable_diffusion_xl_multi_prompts(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components).to(torch_device) |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["prompt_2"] = inputs["prompt"] |
|
output = sd_pipe(**inputs) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["prompt_2"] = "different prompt" |
|
output = sd_pipe(**inputs) |
|
image_slice_3 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["negative_prompt"] = "negative prompt" |
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["negative_prompt"] = "negative prompt" |
|
inputs["negative_prompt_2"] = inputs["negative_prompt"] |
|
output = sd_pipe(**inputs) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["negative_prompt"] = "negative prompt" |
|
inputs["negative_prompt_2"] = "different negative prompt" |
|
output = sd_pipe(**inputs) |
|
image_slice_3 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 |
|
|
|
|
|
def test_stable_diffusion_xl_prompt_embeds(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["prompt"] = 2 * [inputs["prompt"]] |
|
inputs["num_images_per_prompt"] = 2 |
|
|
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
prompt = 2 * [inputs.pop("prompt")] |
|
|
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = sd_pipe.encode_prompt(prompt) |
|
|
|
output = sd_pipe( |
|
**inputs, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|