|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline |
|
from diffusers.utils import is_flax_available, load_image |
|
from diffusers.utils.testing_utils import require_flax, slow |
|
|
|
|
|
if is_flax_available(): |
|
import jax |
|
import jax.numpy as jnp |
|
from flax.jax_utils import replicate |
|
from flax.training.common_utils import shard |
|
|
|
|
|
@slow |
|
@require_flax |
|
class FlaxControlNetPipelineIntegrationTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
|
|
def test_canny(self): |
|
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( |
|
"lllyasviel/sd-controlnet-canny", from_pt=True, dtype=jnp.bfloat16 |
|
) |
|
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, from_pt=True, dtype=jnp.bfloat16 |
|
) |
|
params["controlnet"] = controlnet_params |
|
|
|
prompts = "bird" |
|
num_samples = jax.device_count() |
|
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) |
|
|
|
canny_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" |
|
) |
|
processed_image = pipe.prepare_image_inputs([canny_image] * num_samples) |
|
|
|
rng = jax.random.PRNGKey(0) |
|
rng = jax.random.split(rng, jax.device_count()) |
|
|
|
p_params = replicate(params) |
|
prompt_ids = shard(prompt_ids) |
|
processed_image = shard(processed_image) |
|
|
|
images = pipe( |
|
prompt_ids=prompt_ids, |
|
image=processed_image, |
|
params=p_params, |
|
prng_seed=rng, |
|
num_inference_steps=50, |
|
jit=True, |
|
).images |
|
assert images.shape == (jax.device_count(), 1, 768, 512, 3) |
|
|
|
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) |
|
image_slice = images[0, 253:256, 253:256, -1] |
|
|
|
output_slice = jnp.asarray(jax.device_get(image_slice.flatten())) |
|
expected_slice = jnp.array( |
|
[0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] |
|
) |
|
print(f"output_slice: {output_slice}") |
|
assert jnp.abs(output_slice - expected_slice).max() < 1e-2 |
|
|
|
def test_pose(self): |
|
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( |
|
"lllyasviel/sd-controlnet-openpose", from_pt=True, dtype=jnp.bfloat16 |
|
) |
|
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, from_pt=True, dtype=jnp.bfloat16 |
|
) |
|
params["controlnet"] = controlnet_params |
|
|
|
prompts = "Chef in the kitchen" |
|
num_samples = jax.device_count() |
|
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) |
|
|
|
pose_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" |
|
) |
|
processed_image = pipe.prepare_image_inputs([pose_image] * num_samples) |
|
|
|
rng = jax.random.PRNGKey(0) |
|
rng = jax.random.split(rng, jax.device_count()) |
|
|
|
p_params = replicate(params) |
|
prompt_ids = shard(prompt_ids) |
|
processed_image = shard(processed_image) |
|
|
|
images = pipe( |
|
prompt_ids=prompt_ids, |
|
image=processed_image, |
|
params=p_params, |
|
prng_seed=rng, |
|
num_inference_steps=50, |
|
jit=True, |
|
).images |
|
assert images.shape == (jax.device_count(), 1, 768, 512, 3) |
|
|
|
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) |
|
image_slice = images[0, 253:256, 253:256, -1] |
|
|
|
output_slice = jnp.asarray(jax.device_get(image_slice.flatten())) |
|
expected_slice = jnp.array( |
|
[[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] |
|
) |
|
print(f"output_slice: {output_slice}") |
|
assert jnp.abs(output_slice - expected_slice).max() < 1e-2 |
|
|