|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel |
|
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class DDPMPipelineFastTests(unittest.TestCase): |
|
@property |
|
def dummy_uncond_unet(self): |
|
torch.manual_seed(0) |
|
model = UNet2DModel( |
|
block_out_channels=(4, 8), |
|
layers_per_block=1, |
|
norm_num_groups=4, |
|
sample_size=8, |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"), |
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"), |
|
) |
|
return model |
|
|
|
def test_fast_inference(self): |
|
device = "cpu" |
|
unet = self.dummy_uncond_unet |
|
scheduler = DDPMScheduler() |
|
|
|
ddpm = DDPMPipeline(unet=unet, scheduler=scheduler) |
|
ddpm.to(device) |
|
ddpm.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image = ddpm(generator=generator, num_inference_steps=2, output_type="np").images |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="np", return_dict=False)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 8, 8, 3) |
|
expected_slice = np.array([0.0, 0.9996672, 0.00329116, 1.0, 0.9995991, 1.0, 0.0060907, 0.00115037, 0.0]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_inference_predict_sample(self): |
|
unet = self.dummy_uncond_unet |
|
scheduler = DDPMScheduler(prediction_type="sample") |
|
|
|
ddpm = DDPMPipeline(unet=unet, scheduler=scheduler) |
|
ddpm.to(torch_device) |
|
ddpm.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.manual_seed(0) |
|
image = ddpm(generator=generator, num_inference_steps=2, output_type="np").images |
|
|
|
generator = torch.manual_seed(0) |
|
image_eps = ddpm(generator=generator, num_inference_steps=2, output_type="np")[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_eps_slice = image_eps[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 8, 8, 3) |
|
tolerance = 1e-2 if torch_device != "mps" else 3e-2 |
|
assert np.abs(image_slice.flatten() - image_eps_slice.flatten()).max() < tolerance |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class DDPMPipelineIntegrationTests(unittest.TestCase): |
|
def test_inference_cifar10(self): |
|
model_id = "google/ddpm-cifar10-32" |
|
|
|
unet = UNet2DModel.from_pretrained(model_id) |
|
scheduler = DDPMScheduler.from_pretrained(model_id) |
|
|
|
ddpm = DDPMPipeline(unet=unet, scheduler=scheduler) |
|
ddpm.to(torch_device) |
|
ddpm.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.manual_seed(0) |
|
image = ddpm(generator=generator, output_type="np").images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.4200, 0.3588, 0.1939, 0.3847, 0.3382, 0.2647, 0.4155, 0.3582, 0.3385]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|