|
import tempfile |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import AutoTokenizer, T5EncoderModel |
|
|
|
from diffusers import DDPMScheduler, UNet2DConditionModel |
|
from diffusers.models.attention_processor import AttnAddedKVProcessor |
|
from diffusers.pipelines.deepfloyd_if import IFWatermarker |
|
from diffusers.utils.testing_utils import torch_device |
|
|
|
from ..test_pipelines_common import to_np |
|
|
|
|
|
|
|
|
|
|
|
class IFPipelineTesterMixin: |
|
def _get_dummy_components(self): |
|
torch.manual_seed(0) |
|
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
torch.manual_seed(0) |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
sample_size=32, |
|
layers_per_block=1, |
|
block_out_channels=[32, 64], |
|
down_block_types=[ |
|
"ResnetDownsampleBlock2D", |
|
"SimpleCrossAttnDownBlock2D", |
|
], |
|
mid_block_type="UNetMidBlock2DSimpleCrossAttn", |
|
up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"], |
|
in_channels=3, |
|
out_channels=6, |
|
cross_attention_dim=32, |
|
encoder_hid_dim=32, |
|
attention_head_dim=8, |
|
addition_embed_type="text", |
|
addition_embed_type_num_heads=2, |
|
cross_attention_norm="group_norm", |
|
resnet_time_scale_shift="scale_shift", |
|
act_fn="gelu", |
|
) |
|
unet.set_attn_processor(AttnAddedKVProcessor()) |
|
|
|
torch.manual_seed(0) |
|
scheduler = DDPMScheduler( |
|
num_train_timesteps=1000, |
|
beta_schedule="squaredcos_cap_v2", |
|
beta_start=0.0001, |
|
beta_end=0.02, |
|
thresholding=True, |
|
dynamic_thresholding_ratio=0.95, |
|
sample_max_value=1.0, |
|
prediction_type="epsilon", |
|
variance_type="learned_range", |
|
) |
|
|
|
torch.manual_seed(0) |
|
watermarker = IFWatermarker() |
|
|
|
return { |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"watermarker": watermarker, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
} |
|
|
|
def _get_superresolution_dummy_components(self): |
|
torch.manual_seed(0) |
|
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
torch.manual_seed(0) |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
sample_size=32, |
|
layers_per_block=[1, 2], |
|
block_out_channels=[32, 64], |
|
down_block_types=[ |
|
"ResnetDownsampleBlock2D", |
|
"SimpleCrossAttnDownBlock2D", |
|
], |
|
mid_block_type="UNetMidBlock2DSimpleCrossAttn", |
|
up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"], |
|
in_channels=6, |
|
out_channels=6, |
|
cross_attention_dim=32, |
|
encoder_hid_dim=32, |
|
attention_head_dim=8, |
|
addition_embed_type="text", |
|
addition_embed_type_num_heads=2, |
|
cross_attention_norm="group_norm", |
|
resnet_time_scale_shift="scale_shift", |
|
act_fn="gelu", |
|
class_embed_type="timestep", |
|
mid_block_scale_factor=1.414, |
|
time_embedding_act_fn="gelu", |
|
time_embedding_dim=32, |
|
) |
|
unet.set_attn_processor(AttnAddedKVProcessor()) |
|
|
|
torch.manual_seed(0) |
|
scheduler = DDPMScheduler( |
|
num_train_timesteps=1000, |
|
beta_schedule="squaredcos_cap_v2", |
|
beta_start=0.0001, |
|
beta_end=0.02, |
|
thresholding=True, |
|
dynamic_thresholding_ratio=0.95, |
|
sample_max_value=1.0, |
|
prediction_type="epsilon", |
|
variance_type="learned_range", |
|
) |
|
|
|
torch.manual_seed(0) |
|
image_noising_scheduler = DDPMScheduler( |
|
num_train_timesteps=1000, |
|
beta_schedule="squaredcos_cap_v2", |
|
beta_start=0.0001, |
|
beta_end=0.02, |
|
) |
|
|
|
torch.manual_seed(0) |
|
watermarker = IFWatermarker() |
|
|
|
return { |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"image_noising_scheduler": image_noising_scheduler, |
|
"watermarker": watermarker, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _test_save_load_optional_components(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
prompt = inputs["prompt"] |
|
generator = inputs["generator"] |
|
num_inference_steps = inputs["num_inference_steps"] |
|
output_type = inputs["output_type"] |
|
|
|
if "image" in inputs: |
|
image = inputs["image"] |
|
else: |
|
image = None |
|
|
|
if "mask_image" in inputs: |
|
mask_image = inputs["mask_image"] |
|
else: |
|
mask_image = None |
|
|
|
if "original_image" in inputs: |
|
original_image = inputs["original_image"] |
|
else: |
|
original_image = None |
|
|
|
prompt_embeds, negative_prompt_embeds = pipe.encode_prompt(prompt) |
|
|
|
|
|
inputs = { |
|
"prompt_embeds": prompt_embeds, |
|
"negative_prompt_embeds": negative_prompt_embeds, |
|
"generator": generator, |
|
"num_inference_steps": num_inference_steps, |
|
"output_type": output_type, |
|
} |
|
|
|
if image is not None: |
|
inputs["image"] = image |
|
|
|
if mask_image is not None: |
|
inputs["mask_image"] = mask_image |
|
|
|
if original_image is not None: |
|
inputs["original_image"] = original_image |
|
|
|
|
|
for optional_component in pipe._optional_components: |
|
setattr(pipe, optional_component, None) |
|
|
|
output = pipe(**inputs)[0] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
pipe.save_pretrained(tmpdir) |
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) |
|
pipe_loaded.to(torch_device) |
|
pipe_loaded.set_progress_bar_config(disable=None) |
|
|
|
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) |
|
|
|
for optional_component in pipe._optional_components: |
|
self.assertTrue( |
|
getattr(pipe_loaded, optional_component) is None, |
|
f"`{optional_component}` did not stay set to None after loading.", |
|
) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
generator = inputs["generator"] |
|
num_inference_steps = inputs["num_inference_steps"] |
|
output_type = inputs["output_type"] |
|
|
|
|
|
inputs = { |
|
"prompt_embeds": prompt_embeds, |
|
"negative_prompt_embeds": negative_prompt_embeds, |
|
"generator": generator, |
|
"num_inference_steps": num_inference_steps, |
|
"output_type": output_type, |
|
} |
|
|
|
if image is not None: |
|
inputs["image"] = image |
|
|
|
if mask_image is not None: |
|
inputs["mask_image"] = mask_image |
|
|
|
if original_image is not None: |
|
inputs["original_image"] = original_image |
|
|
|
output_loaded = pipe_loaded(**inputs)[0] |
|
|
|
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() |
|
self.assertLess(max_diff, 1e-4) |
|
|
|
|
|
|
|
def _test_save_load_local(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output = pipe(**inputs)[0] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
pipe.save_pretrained(tmpdir) |
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) |
|
pipe_loaded.to(torch_device) |
|
pipe_loaded.set_progress_bar_config(disable=None) |
|
|
|
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_loaded = pipe_loaded(**inputs)[0] |
|
|
|
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() |
|
self.assertLess(max_diff, 1e-4) |
|
|